GO Samples A and B are at different initial temperatures when they are placed in a thermally insulated container and allowed to come to thermal equilibrium. Figure 18-34a gives their temperatures T versus time t. Sample A has a mass of 5.0 kg; sample B has a mass of 1.5 kg. Figure 18-34b is a general plot for the material of sample B. It shows the temperature change ΔT that the material undergoes when energy is transferred to it as heat Q. The change ΔT is plotted versus the energy Q per unit mass of the material, and the scale of the vertical axis is set by ΔTs = 4.0 C°. What is the specific heal of sample A?
Figure 18-34 Problem 34.
Want to see the full answer?
Check out a sample textbook solutionChapter 18 Solutions
Fundamentals of Physics, Volume 1, Chapter 1-20
Additional Science Textbook Solutions
Fundamentals Of Thermodynamics
Organic Chemistry (8th Edition)
Cosmic Perspective Fundamentals
Human Physiology: An Integrated Approach (8th Edition)
Microbiology with Diseases by Body System (5th Edition)
Campbell Essential Biology with Physiology (5th Edition)
- For a temperature increase of 10 at constant volume, what is the heat absorbed by (a) 3.0 mol of a dilute monatomic gas; (b) 0.50 mol of a dilute diatomic gas; and (c) 15 mol of a dilute polyatomic gas?arrow_forwardA sample of a solid substance has a mass m and a density 0 at a temperature T0. (a) Find the density of the substance if its temperature is increased by an amount T in terms of the coefficient of volume expansion b. (b) What is the mass of the sample if the temperature is raised by an amount T?arrow_forwardAn aluminum rod 0.500 m in length and with a cross-sectional area of 2.50 cm2 is inserted into a thermally insulated vessel containing liquid helium at 4.20 K. The rod is initially at 300 K. (a) If one-half of the rod is inserted into the helium, how many liters of helium boil off by the time the inserted half cools to 4.20 K? Assume the upper half does not yet cool. (b) If the circular surface of the upper end of the rod is maintained at 300 K, what is the approximate boil-off rate of liquid helium in liters per second after the lower half has reached 4.20 K? (Aluminum has thermal conductivity of 3 100 W/m K at 4.20 K; ignore its temperature variation. The density of liquid helium is 125 kg/m3.)arrow_forward
- In an electrically heated home, the temperature of the ground in contact with a concrete basement wall is 10.3 oC. The temperature at the inside surface of the wall is 18.1 oC. The wall is 0.14 m thick and has an area of 6.5 m2. Assume that one kilowatt hour of electrical energy costs $0.10. How many hours are required for one dollar's worth of energy to be conducted through the wall?arrow_forward500 g of Ice at 0 °C is kept in an insulated cubic box. The length of the box is 30 cm and the thickness of the wall is 0.5 cm. The thermal conductivity of the wall is 0.04 W/mK. If the environment temperature outside the box is 25 °C, Determine (a) the rate of heat loss due to the heat conduction.arrow_forwardFind the temperature u(x,t) from the heat equation in a laterally insulated copper bar 80 cm long with c**2=1.158 cm**2/sec. If the initial temperature is represented by the below graph and the ends are kept at 0C.arrow_forward
- The rectangular plate has a length of l and width of w. If the temperature increases by ΔT, find the increase of the area of the plate, given that the coefficient of the linear expansion of the plate material is α.arrow_forwardIn a solar water heater, energy from the Sun is gathered by water that circulates through tubes in a rooftop collector. The solar radiation enters the collector through a transparent cover and warms the water in the tubes; this water is pumped into a holding tank. Assume that the efficiency of the overall system is 12.0% (that is, 88% of the incident solar energy is lost from the system). What collector area is necessary to raise the temperature of 450 L of water in the tank from 19°C to 36°C in 2.5 h when the intensity of incident sunlight is 480 W/m2? The specific heat of water is 4186 J/kg-K. The density of water is 1.00 g/cm. 13 Number Unitsarrow_forwardThe thermal conductivities of human tissues vary greatly. Fat and skin have conductivities of about 0.20 W/m . K and 0.020 W/m . K, respectively, while other tissues inside the body have conductivities of about 0.50 W/m . K. Assume that between the core region of the body and the skin surface lies a skin layer of 1.0 mm, fat layer of 0.50 cm, and 3.2 cm of other tissues. (a) Find the R-factor for each of these layers, and the equivalent R-factor for all layers taken together, retaining two digits. (b) Find the rate of energy loss when the core temperature is 37°C and the exterior temperature is 0°C. Assume that both a protective layer of clothing and an insulating layer of unmoving air are absent, and a body area of 2.0 m2.arrow_forward
- The thermal conductivities of human tissues vary greatly. Fat and skin have conductivities of about 0.20 W/m · K and 0.020 W/m · K respectively, while other tissues inside the body have conductivities of about 0.50 W/m · K. Assume that between the core region of the body and the skin surface lies a skin layer of 1.0 mm, fat layer of 0.50 cm, and 3.2 cm of other tissues. (a) Find the R-factor for each of these layers, and the equivalent R-factor for all layers taken together, retaining two digits. Rskin m2 · K/W Rfat m2 · K/W Rtissue m2 · K/W R m2 · K/W (b) Find the rate of energy loss when the core temperature is 37°C and the exterior temperature is 0°C. Assume that both a protective layer of clothing and an insulating layer of unmoving air are absent, and a body area of 2.0 m2. Warrow_forwardThe thermal conductivities of human tissues vary greatly. Fat and skin have conductivities of about 0.20 W/m · K and 0.020 w/m · K respectively, while other tissues inside the body have conductivities of about 0.50 W/m · K. Assume that between the core region of the body and the skin surface lies a skin layer of 1.0 mm, fat layer of 0.50 cm, and 3.2 cm of other tissues. (a) Find the R-factor for each of these layers, and the equivalent R-factor for all layers taken together, retaining two digits. m² - K/W Rskin m² . K/W Rfat m² - K/W Rtissue |m² - K/W R (b) Find the rate of energy loss when the core temperature is 37°C and the exterior temperature is 0°C. Assume that both a protective layer of clothing and an insulating layer of unmoving air are absent, and a body area of 2.0 m2.arrow_forwardSamples A and B are at different initial temperatures when they are placed in a thermally insulated container and allowed to come to thermal equilibrium. Figure (a) gives their temperatures T versus time t. Sample A has a mass of 5.37 kg; sample B has a mass of 1.64 kg. Figure (b) is a general plot for the material of sample B. It shows the temperature change AT that the material undergoes when energy is transferred to it as heat Q. The change AT is plotted versus the energy Q per unit mass of the material, and the scale of the vertical axis is set by AT, = 4.10 °C. What is the specific heat of sample A? 100 AT A 60 20 10 20 8. 16 t (min) Q/m (kJ/kg) (a) (b) Number i Units T (°C) AT (C°)arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning