General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17.5, Problem 17.7P
Which is the stronger oxidizing agent, Cl2(g) or Ag+(aq)? Which is the stronger reducing agent, Fe(s) or Mg(s)?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
3. Draw the expanded structural formula, the condensed structural formula, and the skeletal
structural formula for 2-pentene.
expanded structure:
Condensed structure:
Skeletal formula:
4. Draw the expanded structural formula, the condensed structural formula, and the skeletal
structural formula for 2-methyl-3-heptene.
expanded structure:
Condensed structure:
Skeletal formula:
following structure
Part IV. Propose a plausible Structure w/ the following descriptions:
a) A 5-carbon hydrocarbon w/ a single peak in its proton decoupled
the DEPT-135 Spectrum shows a negative peak
C-NMR spectrum where
b) what cyclohexane dione isomer gives the largest no. Of 13C NMR signals?
c) C5H120 (5-carbon alcohol) w/ most deshielded carbon absent in any of its DEPT Spectiva
13C NMR is good for:
a) determining the molecular weight of
the compound
b) identifying certain functional groups.
c) determining the carbon skeleton, for
example methyl vs ethyl vs propyl groups
d) determining how many different kinds
of carbon are in the molecule
Chapter 17 Solutions
General Chemistry: Atoms First
Ch. 17.1 - Describe a galvanic cell that uses the reaction...Ch. 17.2 - Write a balanced equation for the overall cell...Ch. 17.2 - Write the shorthand notation for a galvanic cell...Ch. 17.2 - Prob. 17.4CPCh. 17.3 - The standard cell potential at 25 C is 1.21 V for...Ch. 17.4 - The standard potential for the following galvanic...Ch. 17.5 - Which is the stronger oxidizing agent, Cl2(g) or...Ch. 17.5 - Predict from Table 17.1 whether each of the...Ch. 17.5 - Consider the following table of standard reduction...Ch. 17.6 - Consider a galvanic cell that uses the reaction...
Ch. 17.6 - Consider the following galvanic cell: (a) What is...Ch. 17.7 - What is the pH of the solution in the anode...Ch. 17.8 - Use the data in Table 17.1 to calculate the...Ch. 17.8 - Prob. 17.14PCh. 17.9 - Write a balanced equation for the overall cell...Ch. 17.10 - In what ways are fuel cells and batteries similar,...Ch. 17.10 - Prob. 17.17PCh. 17.11 - Prob. 17.18PCh. 17.12 - Metallic potassium was first prepared by Humphrey...Ch. 17.12 - Predict the half-cell reactions that occur when...Ch. 17.13 - Sketch an electrolytic cell suitable for...Ch. 17.14 - How many kilograms of aluminum can be produced in...Ch. 17.14 - A layer of silver is electroplated on a coffee...Ch. 17.14 - What is the overall cell reaction and cell...Ch. 17.14 - Prob. 17.25PCh. 17 - Prob. 17.26CPCh. 17 - Prob. 17.27CPCh. 17 - Prob. 17.28CPCh. 17 - Sketch a cell with inert electrodes suitable for...Ch. 17 - Prob. 17.30CPCh. 17 - It has recently been reported that porous pellets...Ch. 17 - Consider a Daniell cell with 1.0 M ion...Ch. 17 - Consider the following galvanic cell with 0.10 M...Ch. 17 - Prob. 17.34CPCh. 17 - Consider the following table of standard reduction...Ch. 17 - Prob. 17.36SPCh. 17 - What is the function of a salt bridge in a...Ch. 17 - Prob. 17.38SPCh. 17 - Describe galvanic cells that use the following...Ch. 17 - Write the standard shorthand notation for each...Ch. 17 - Write the standard shorthand notation for each...Ch. 17 - Prob. 17.42SPCh. 17 - Write the standard shorthand notation for a...Ch. 17 - An H2/H+ half-cell (anode) and an Ag+/Ag half-cell...Ch. 17 - A galvanic cell is constructed from a Zn/Zn2+...Ch. 17 - Prob. 17.46SPCh. 17 - Prob. 17.47SPCh. 17 - Prob. 17.48SPCh. 17 - Prob. 17.49SPCh. 17 - Prob. 17.50SPCh. 17 - Prob. 17.51SPCh. 17 - Prob. 17.52SPCh. 17 - Prob. 17.53SPCh. 17 - Prob. 17.54SPCh. 17 - Prob. 17.55SPCh. 17 - Prob. 17.56SPCh. 17 - Prob. 17.57SPCh. 17 - Prob. 17.58SPCh. 17 - Prob. 17.59SPCh. 17 - Prob. 17.60SPCh. 17 - Prob. 17.61SPCh. 17 - Prob. 17.62SPCh. 17 - Prob. 17.63SPCh. 17 - Prob. 17.64SPCh. 17 - Calculate E and G (in kilojoules) for the cell...Ch. 17 - Prob. 17.66SPCh. 17 - Prob. 17.67SPCh. 17 - Use the data in Appendix D to predict whether the...Ch. 17 - Use the data in Appendix D to predict whether the...Ch. 17 - Prob. 17.70SPCh. 17 - What reaction can occur, if any, when the...Ch. 17 - Consider a galvanic cell that uses the reaction...Ch. 17 - Prob. 17.73SPCh. 17 - Prob. 17.74SPCh. 17 - Prob. 17.75SPCh. 17 - Prob. 17.76SPCh. 17 - What is the Fe2+: Sn2+ concentration ratio in the...Ch. 17 - The Nernst equation applies to both cell reactions...Ch. 17 - Prob. 17.79SPCh. 17 - Prob. 17.80SPCh. 17 - Prob. 17.81SPCh. 17 - Prob. 17.82SPCh. 17 - Prob. 17.83SPCh. 17 - Prob. 17.84SPCh. 17 - Prob. 17.85SPCh. 17 - Prob. 17.86SPCh. 17 - Prob. 17.87SPCh. 17 - Calculate the equilibrium constant at 25 C for the...Ch. 17 - Prob. 17.89SPCh. 17 - For a lead storage battery: (a) Sketch one cell...Ch. 17 - Prob. 17.91SPCh. 17 - Prob. 17.92SPCh. 17 - Prob. 17.93SPCh. 17 - Prob. 17.94SPCh. 17 - Prob. 17.95SPCh. 17 - Prob. 17.96SPCh. 17 - Prob. 17.97SPCh. 17 - Prob. 17.98SPCh. 17 - (a)Sketch a cell with inert electrodes suitable...Ch. 17 - List the anode and cathode half-reactions that...Ch. 17 - Prob. 17.101SPCh. 17 - Prob. 17.102SPCh. 17 - Predict the anode, cathode, and overall cell...Ch. 17 - Prob. 17.104SPCh. 17 - Prob. 17.105SPCh. 17 - How many hours are required to produce 1.00 103...Ch. 17 - Prob. 17.107SPCh. 17 - Prob. 17.108SPCh. 17 - Prob. 17.109SPCh. 17 - Prob. 17.110CHPCh. 17 - Prob. 17.111CHPCh. 17 - Prob. 17.112CHPCh. 17 - Prob. 17.113CHPCh. 17 - Prob. 17.114CHPCh. 17 - Prob. 17.115CHPCh. 17 - Prob. 17.116CHPCh. 17 - Prob. 17.117CHPCh. 17 - Prob. 17.118CHPCh. 17 - The sodium-sulfur battery has molybdenum...Ch. 17 - When suspected drunk drivers are tested with a...Ch. 17 - Consider the addition of the following...Ch. 17 - The following galvanic cell has a potential of...Ch. 17 - A galvanic cell has a silver electrode in contact...Ch. 17 - Prob. 17.124CHPCh. 17 - Prob. 17.125CHPCh. 17 - Prob. 17.126CHPCh. 17 - For the following half-reaction, E = 1.103 V:...Ch. 17 - Prob. 17.128CHPCh. 17 - Prob. 17.129CHPCh. 17 - Prob. 17.130MPCh. 17 - Prob. 17.131MPCh. 17 - Prob. 17.134MPCh. 17 - Prob. 17.135MPCh. 17 - Prob. 17.136MPCh. 17 - Prob. 17.137MPCh. 17 - Experimental solid-oxide fuel cells that use...Ch. 17 - The half-reactions that occur in ordinary alkaline...Ch. 17 - Gold metal is extracted from its ore by treating...Ch. 17 - Consider the redox titration of 100.0 mL of a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- 6 D 2. (1 pt) Limonene can be isolated by performing steam distillation of orange peel. Could you have performed this experiment using hexane instead of water? Explain. 3. (2 pts) Using GCMS results, analyze and discuss the purity of the Limonene obtained from the steam distillation of orange peel.arrow_forwardPart III. Arrange the following carbons (in blue) in order of increasing chemical shift. HO B NH 2 A CIarrow_forward6. Choose the compound that will produce the spectrum below and assign the signals as carbonyl, aryl, or alkyl. 100 ō (ppm) 50 0 7. 200 150 Assign all of the protons on the spectrum below. 8. A B 4 E C 3 ō (ppm) 2 1 0 Choose the compound that will produce the spectrum below and assign the signals to the corresponding protons. OH 6 OH 3 2 1 0 4 ō (ppm)arrow_forward
- In the Thermo Fisher application note about wine analysis (Lesson 3), the following chromatogram was collected of nine components of wine. If peak 3 has a retention time of 3.15 minutes and a peak width of 0.070 minutes, and peak 4 has a retention time of 3.24 minutes and a peak width of 0.075 minutes, what is the resolution factor between the two peaks? [Hint: it will help to review Lesson 2 for this question.] MAU 300 200 T 34 5 100- 1 2 CO 6 7 8 9 0 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 Minutes 3.22 0.62 1.04 O 1.24arrow_forwardThe diagram shows two metals, A and B, which melt at 1000°C and 1400°C. State the weight percentage of the primary constituent (grains of C) that would be obtained by solidifying a 20% alloy of B. 1000°C a+L L+C 900°С 12 α a+C 45 1200 C L+y 140096 C+Y a+ß 800°C 700°C C+B 96 92 a+B 0 10 20 30 40 50 60 70 80 90 100 A % peso B Barrow_forward8. Choose the compound that will produce the spectrum below and assign the signals to the corresponding protons. 2 4 3 ō (ppm) OH 4 6 6 СОН 2 1 0arrow_forward
- 7. Assign all of the protons on the spectrum below. A B 2 C E 2 1 3 6 4 3 2 1 0arrow_forwarde. If (3R,4R)-3,4-dichloro-2,5-dimethylhexane and (3R,4S)-3,4-dichloro-2,5-dimethylhexane are in a solution at the same concentration, would this solution be expected to rotate plane polarized light (that is, be optically active)? Please provide your reasoning for your answer. [If you read this problem carefully, you will not need to draw out the structures to arrive at your answer...]arrow_forward1. How many neighbors does the proton that produces the multiplet below have? 2. 3. اللـ Draw a partial structure from the multiplet below. (The integration of the multiplet is 6) M Using the additivity constants found in appendix G of your lab manual, calculate the approximate chemical shifts of the protons indicated below. (Show your work!!!) B A Br SHarrow_forward
- 1) Suppose 0.1 kg ice at 0°C (273K) is in 0.5kg water at 20°C (293K). What is the change in entropy of the ice as it melts at 0°? To produce the original "water gas" mixture, carbon (in a combustible form known as coke) is reacted with steam: 131.4 kJ + H20(g) + C(s) → CO(g) + H2(g) From this information and the equations in the previous problem, calculate the enthalpy for the combustion or carbon to form carbon dioxide. kindly show me how to solve this long problem. Thanksarrow_forward4. An 'H-NMR of a compound is acquired. The integration for signal A is 5692 and the integration for signal B is 25614. What is the simplest whole number ratio of protons for signals A and B? (Show your work!!!) 5. Assign the carbons in the NMR below as either carbonyl, aromatic, or alkyl. 200 150 100 50 ō (ppm) 1arrow_forwardSpeaking of composite materials, indicate the correct option:(A). Composite materials can only be: metal-polymer or polymer-polymer.(B). Composite materials can be made up of particles, but not fibers or sheets.(C). When the reinforcing particles are uniformly distributed in a composite material, there may be a greater tendency for it to have isotropic properties.(D). None of the above is correct.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY