Concept explainers
(a)
Interpretation:
The values of
Concept Introduction:
Change in free energy:
The standard cell potential related to the free-energy is given by the equation,
Where,
(b)
Interpretation:
The cell voltage at
Concept Introduction:
Nernst Equation:
For Half-reaction,
The Nernst equation results in the half-cell potential E as,
Here,
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
General Chemistry: Atoms First
- The standard potential, E, for the reaction of Zn(s) and Cl2(g) is +2.12 V. What is the standard free energy change, rG, for the reaction?arrow_forwardActually, the carbon in CO2(g) is thermodynamically unstable with respect to the carbon in calcium carbonate(limestone). Verify this by determining the standardGibbs free energy change for the reaction of lime,CaO(s), with CO2(g) to make CaCO3(s).arrow_forwardHow is the pH scale defined? What range of pH values corresponds to acidic solutions? What range corresponds to basic solutions? Why is pH = 7.00 considered neutral? When the pH of a solution changes by one unit, by what factor does the hydrogen ion concentration change in the solution? How is pOH defined? How arc pH and pOH for a given solution related? Explain.arrow_forward
- Calculate G for the following reactions and state whether each reaction is spontaneous under standard conditions at 298 K. (a) 2Na(s) + H2SO4() Na2SO4(s) + H2(g) (b) Cu(s) + H2SO4() CuSO4(s) + H2(g)arrow_forwardHydrazine, N2H4, can be used as the reducing agent in a fuel cell. N2H4(aq) + O2(aq) N2(g) + 2 H2O () (a) If rG for the reaction is 598 kJ, calculate the valueof E expected for the reaction. (b) Suppose the equation is written with all coefficients doubled. Determine rG and E for this new reaction.arrow_forwardThe free energy change for a reaction, rG, is the maximum energy that can be extracted from the process as work, whereas rH is the total chemical potential energy change. The efficiency of a fuel cell is the ratio of these two quantities. Efficiency=rGrH100 Consider the hydrogen-oxygen fuel cell, where the net reaction is H2(g)+12O2(g)H2O(l) (a) Calculate the efficiency of the fuel cell under standard conditions. (b) Calculate the efficiency of the fuel cell if the product is water vapor instead of liquid water. (c) Does the efficiency depend on the state of the reaction product? Why or why not?arrow_forward
- An electrolytic cell is set up with Cd(s) in Cd(NO3)2(aq) and Zn(s) in Zn(NO3)2(aq). Initially both electrodesweigh 5.00 g. After running the cell for several hours theelectrode in the left compartment weighs 4.75 g. (a) Which electrode is in the left compartment? (b) Does the mass of the electrode in the right compartmentincrease, decrease, or stay the same? If the masschanges, what is the new mass? (c) Does the volume of the electrode in the right compartment increase, decrease, or stay the same? If the volumechanges, what is the new volume? (The density of Cd is8.65 g/cm3.)arrow_forwardCalculate E°, G°, and K at 25°C for the reaction 3Mn2+(aq)+2MnO4(aq)+2H2O5MnO2(s)+4H+(aq)arrow_forwardCalculate E°, G°, and K at 25°C for the reaction 3MnO4(aq)+4H+(aq)+Cl2(g)2Mn2+(aq)+2ClO3(aq)+2H2Oarrow_forward
- Calculate K at 25°C for each of the reactions referred to in Question 32. Assume smallest whole-number coefficients.arrow_forwardChromium can be electroplated from aqueous potassium dichromate, with the reduction shown below. If a current of 6.0 A and a voltage of 11.6 V are used: Cr20, (aq) + 14H* (ag)+ 12e→ 2Cr(s + 7H20 How many kilowatt-hours of electrical energy are required to plate 3.91 g of chromium? The molar mass of chromium is 52.00 g/mol. Hint: Check the units to know the required factors to arrive at kWh.arrow_forwardMetallic nickel can be made by the electrolysis of molten NiCl₂. (a) What mass of Ni is formed by passing a current of 7.09 A through molten NiCl₂ for 4.70 days? The unbalanced chemical reaction representing this electrolysis is shown below. NiCl₂ → Ni + Cl₂ g of Ni is formed by this electrolysis. (b) How many minutes are needed to plate out 18.00 g of Ni from molten NiCl₂ using 6.93 A current? minutes are needed.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning