General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17.14, Problem 17.22P
How many kilograms of aluminum can be produced in 8.00 h by passing a constant current of 1.00 × 105 A through a molten mixture of aluminum oxide and cryolite?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
General Chemistry: Atoms First
Ch. 17.1 - Describe a galvanic cell that uses the reaction...Ch. 17.2 - Write a balanced equation for the overall cell...Ch. 17.2 - Write the shorthand notation for a galvanic cell...Ch. 17.2 - Prob. 17.4CPCh. 17.3 - The standard cell potential at 25 C is 1.21 V for...Ch. 17.4 - The standard potential for the following galvanic...Ch. 17.5 - Which is the stronger oxidizing agent, Cl2(g) or...Ch. 17.5 - Predict from Table 17.1 whether each of the...Ch. 17.5 - Consider the following table of standard reduction...Ch. 17.6 - Consider a galvanic cell that uses the reaction...
Ch. 17.6 - Consider the following galvanic cell: (a) What is...Ch. 17.7 - What is the pH of the solution in the anode...Ch. 17.8 - Use the data in Table 17.1 to calculate the...Ch. 17.8 - Prob. 17.14PCh. 17.9 - Write a balanced equation for the overall cell...Ch. 17.10 - In what ways are fuel cells and batteries similar,...Ch. 17.10 - Prob. 17.17PCh. 17.11 - Prob. 17.18PCh. 17.12 - Metallic potassium was first prepared by Humphrey...Ch. 17.12 - Predict the half-cell reactions that occur when...Ch. 17.13 - Sketch an electrolytic cell suitable for...Ch. 17.14 - How many kilograms of aluminum can be produced in...Ch. 17.14 - A layer of silver is electroplated on a coffee...Ch. 17.14 - What is the overall cell reaction and cell...Ch. 17.14 - Prob. 17.25PCh. 17 - Prob. 17.26CPCh. 17 - Prob. 17.27CPCh. 17 - Prob. 17.28CPCh. 17 - Sketch a cell with inert electrodes suitable for...Ch. 17 - Prob. 17.30CPCh. 17 - It has recently been reported that porous pellets...Ch. 17 - Consider a Daniell cell with 1.0 M ion...Ch. 17 - Consider the following galvanic cell with 0.10 M...Ch. 17 - Prob. 17.34CPCh. 17 - Consider the following table of standard reduction...Ch. 17 - Prob. 17.36SPCh. 17 - What is the function of a salt bridge in a...Ch. 17 - Prob. 17.38SPCh. 17 - Describe galvanic cells that use the following...Ch. 17 - Write the standard shorthand notation for each...Ch. 17 - Write the standard shorthand notation for each...Ch. 17 - Prob. 17.42SPCh. 17 - Write the standard shorthand notation for a...Ch. 17 - An H2/H+ half-cell (anode) and an Ag+/Ag half-cell...Ch. 17 - A galvanic cell is constructed from a Zn/Zn2+...Ch. 17 - Prob. 17.46SPCh. 17 - Prob. 17.47SPCh. 17 - Prob. 17.48SPCh. 17 - Prob. 17.49SPCh. 17 - Prob. 17.50SPCh. 17 - Prob. 17.51SPCh. 17 - Prob. 17.52SPCh. 17 - Prob. 17.53SPCh. 17 - Prob. 17.54SPCh. 17 - Prob. 17.55SPCh. 17 - Prob. 17.56SPCh. 17 - Prob. 17.57SPCh. 17 - Prob. 17.58SPCh. 17 - Prob. 17.59SPCh. 17 - Prob. 17.60SPCh. 17 - Prob. 17.61SPCh. 17 - Prob. 17.62SPCh. 17 - Prob. 17.63SPCh. 17 - Prob. 17.64SPCh. 17 - Calculate E and G (in kilojoules) for the cell...Ch. 17 - Prob. 17.66SPCh. 17 - Prob. 17.67SPCh. 17 - Use the data in Appendix D to predict whether the...Ch. 17 - Use the data in Appendix D to predict whether the...Ch. 17 - Prob. 17.70SPCh. 17 - What reaction can occur, if any, when the...Ch. 17 - Consider a galvanic cell that uses the reaction...Ch. 17 - Prob. 17.73SPCh. 17 - Prob. 17.74SPCh. 17 - Prob. 17.75SPCh. 17 - Prob. 17.76SPCh. 17 - What is the Fe2+: Sn2+ concentration ratio in the...Ch. 17 - The Nernst equation applies to both cell reactions...Ch. 17 - Prob. 17.79SPCh. 17 - Prob. 17.80SPCh. 17 - Prob. 17.81SPCh. 17 - Prob. 17.82SPCh. 17 - Prob. 17.83SPCh. 17 - Prob. 17.84SPCh. 17 - Prob. 17.85SPCh. 17 - Prob. 17.86SPCh. 17 - Prob. 17.87SPCh. 17 - Calculate the equilibrium constant at 25 C for the...Ch. 17 - Prob. 17.89SPCh. 17 - For a lead storage battery: (a) Sketch one cell...Ch. 17 - Prob. 17.91SPCh. 17 - Prob. 17.92SPCh. 17 - Prob. 17.93SPCh. 17 - Prob. 17.94SPCh. 17 - Prob. 17.95SPCh. 17 - Prob. 17.96SPCh. 17 - Prob. 17.97SPCh. 17 - Prob. 17.98SPCh. 17 - (a)Sketch a cell with inert electrodes suitable...Ch. 17 - List the anode and cathode half-reactions that...Ch. 17 - Prob. 17.101SPCh. 17 - Prob. 17.102SPCh. 17 - Predict the anode, cathode, and overall cell...Ch. 17 - Prob. 17.104SPCh. 17 - Prob. 17.105SPCh. 17 - How many hours are required to produce 1.00 103...Ch. 17 - Prob. 17.107SPCh. 17 - Prob. 17.108SPCh. 17 - Prob. 17.109SPCh. 17 - Prob. 17.110CHPCh. 17 - Prob. 17.111CHPCh. 17 - Prob. 17.112CHPCh. 17 - Prob. 17.113CHPCh. 17 - Prob. 17.114CHPCh. 17 - Prob. 17.115CHPCh. 17 - Prob. 17.116CHPCh. 17 - Prob. 17.117CHPCh. 17 - Prob. 17.118CHPCh. 17 - The sodium-sulfur battery has molybdenum...Ch. 17 - When suspected drunk drivers are tested with a...Ch. 17 - Consider the addition of the following...Ch. 17 - The following galvanic cell has a potential of...Ch. 17 - A galvanic cell has a silver electrode in contact...Ch. 17 - Prob. 17.124CHPCh. 17 - Prob. 17.125CHPCh. 17 - Prob. 17.126CHPCh. 17 - For the following half-reaction, E = 1.103 V:...Ch. 17 - Prob. 17.128CHPCh. 17 - Prob. 17.129CHPCh. 17 - Prob. 17.130MPCh. 17 - Prob. 17.131MPCh. 17 - Prob. 17.134MPCh. 17 - Prob. 17.135MPCh. 17 - Prob. 17.136MPCh. 17 - Prob. 17.137MPCh. 17 - Experimental solid-oxide fuel cells that use...Ch. 17 - The half-reactions that occur in ordinary alkaline...Ch. 17 - Gold metal is extracted from its ore by treating...Ch. 17 - Consider the redox titration of 100.0 mL of a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- An electrode is prepared from liquid mercury in contact with a saturated solution of mercury(I) chloride, Hg2Cl, containing 1.00 M Cl . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.268 V. What is the solubility product of mercury(I) chloride?arrow_forwardAn electrolysis experiment is performed to determine the value of the Faraday constant (number of coulombs per mole of electrons). In this experiment, 28.8 g of gold is plated out from a AuCN solution by running an electrolytic cell for two hours with a current of 2.00 A. What is the experimental value obtained for the Faraday Constant?arrow_forwardAn aqueous solution of an unknown salt of gold is electrolyzed by a current of 2.75 amps for 3.39 hours. The electroplating is carried out with an efficiency of 93.0%, resulting in a deposit of 21.221 g of gold. a How many faradays are required to deposit the gold? b What is the charge on the gold ions (based on your calculations)?arrow_forward
- Aluminum is produced commercially by the electrolysis of Al2O3 in the presence of a molten salt. If a plant has a continuous capacity of 1.00 million A, what mass of aluminum can be produced in 2.00 h?arrow_forward1. If you wish to convert 0.0100 mol of Au3+ (aq) ions into Au(s) in a “gold-plating” process, how long must you electrolyze a solution if the current passing through the circuit is 2.00 amps? 483 seconds 4.83 104 seconds 965 seconds 1450 secondsarrow_forwardWhat is the standard cell potential you would obtain from a cell at 25C using an electrode in which Hg22+(aq) is in contact with mercury metal and an electrode in which an aluminum strip dips into a solution of Al3+(aq)?arrow_forward
- A voltaic cell is constructed in which one half-cell consists of a silver wire in an aqueous solution of AgNO3.The other half cell consists of an inert platinum wire in an aqueous solution containing Fe2+(aq) and Fe3+(aq). (a) Calculate the cell potential, assuming standard conditions. (b) Write the net ionic equation for the reaction occurring in the cell. (c) Which electrode is the anode and which is the cathode? (d) If [Ag+] is 0.10 M, and [Fe2+] and [Fe3+] are both 1.0 M, what is the cell potential? Is the net cell reaction still that used in part (a)? If not, what is the net reaction under the new conditions?arrow_forwardThe mass of three different metal electrodes, each from a different galvanic cell, were determined before and after the current generated by the oxidation-reduction reaction in each cell was allowed to flow for a few minutes. The first metal electrode, given the label A, was found to have increased in mass; the second metal electrode, given the label B, did not change in mass; and the third metal electrode, given the label C, was found to have lost mass. Make an educated guess as to which electrodes were active and which were inert electrodes, and which were anode(s) and which were the cathode(s).arrow_forwardConsider the following cell running under standard conditions: Fe(s)Fe2+(aq)Al3+(aq)Al(s) a Is this a voltaic cell? b Which species is being reduced during the chemical reaction? c Which species is the oxidizing agent? d What happens to the concentration of Fe3+(aq) as the reaction proceeds? e How does the mass of Al(s) change as the reaction proceeds?arrow_forward
- Consider the following cell reaction at 25C. 2Cr(s)+3Fe2+(aq)2Cr3+(aq)+3Fe(s) Calculate the standard cell potential of this cell from the standard electrode potentials, and from this obtain G for the cell reaction. Use data in Appendix C to calculate H; note that Cr(H2O)63+(aq) equals Cr3+(aq). Use these values of H and G to obtain S for the cell reaction.arrow_forwardA lead storage battery delivers a current of 6.00 A for one hour and 22 minutes at a voltage of 12.0 V. (a) How many grams of lead are converted to PbSO4? (b) How much electrical energy is produced in kilowatt hours?arrow_forwardSome metals, such as thallium, can be oxidized to more than one oxidation state. Obtain the balanced net ionic equations for the following oxidation reduction reactions, in which nitric acid is reduced to nitric oxide, NO. a Oxidation of thallium metal to thallium(I) ion by nitric acid. b Oxidation of thallium(I) ion to thallium(III) ion by nitric acid. c Oxidation of thallium metal to thallium(III) by nitric acid. [Consider adding the a and b equations.]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY