
General Chemistry: Atoms First
2nd Edition
ISBN: 9780321809261
Author: John E. McMurry, Robert C. Fay
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17, Problem 17.104SP
Interpretation Introduction
Interpretation:
The amount of silver (in grams) that will be obtained when an aqueous solution of silver nitrate is electrolysed at given time and current has to be calculated.
Concept Introduction:
The mass of a substance is calculated from the constant current and the time duration of the reaction. Conversion factors are used along with the atomic weight of the substance. The general formula for obtaining the mass using the conversion factor is given as,
The flow chart below is useful in the calculation of grams or litres of the product.
Figure 1
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Could you please solve the first problem in this way and present it similarly but color-coded or step by step so I can understand it better? Thank you!
Could you please solve the first problem in this way and present it similarly but (color-coded) and step by step so I can understand it better? Thank you! I want to see what they are doing
Can you please help mne with this problem. Im a visual person, so can you redraw it, potentislly color code and then as well explain it. I know im given CO2 use that to explain to me, as well as maybe give me a second example just to clarify even more with drawings (visuals) and explanations.
Chapter 17 Solutions
General Chemistry: Atoms First
Ch. 17.1 - Describe a galvanic cell that uses the reaction...Ch. 17.2 - Write a balanced equation for the overall cell...Ch. 17.2 - Write the shorthand notation for a galvanic cell...Ch. 17.2 - Prob. 17.4CPCh. 17.3 - The standard cell potential at 25 C is 1.21 V for...Ch. 17.4 - The standard potential for the following galvanic...Ch. 17.5 - Which is the stronger oxidizing agent, Cl2(g) or...Ch. 17.5 - Predict from Table 17.1 whether each of the...Ch. 17.5 - Consider the following table of standard reduction...Ch. 17.6 - Consider a galvanic cell that uses the reaction...
Ch. 17.6 - Consider the following galvanic cell: (a) What is...Ch. 17.7 - What is the pH of the solution in the anode...Ch. 17.8 - Use the data in Table 17.1 to calculate the...Ch. 17.8 - Prob. 17.14PCh. 17.9 - Write a balanced equation for the overall cell...Ch. 17.10 - In what ways are fuel cells and batteries similar,...Ch. 17.10 - Prob. 17.17PCh. 17.11 - Prob. 17.18PCh. 17.12 - Metallic potassium was first prepared by Humphrey...Ch. 17.12 - Predict the half-cell reactions that occur when...Ch. 17.13 - Sketch an electrolytic cell suitable for...Ch. 17.14 - How many kilograms of aluminum can be produced in...Ch. 17.14 - A layer of silver is electroplated on a coffee...Ch. 17.14 - What is the overall cell reaction and cell...Ch. 17.14 - Prob. 17.25PCh. 17 - Prob. 17.26CPCh. 17 - Prob. 17.27CPCh. 17 - Prob. 17.28CPCh. 17 - Sketch a cell with inert electrodes suitable for...Ch. 17 - Prob. 17.30CPCh. 17 - It has recently been reported that porous pellets...Ch. 17 - Consider a Daniell cell with 1.0 M ion...Ch. 17 - Consider the following galvanic cell with 0.10 M...Ch. 17 - Prob. 17.34CPCh. 17 - Consider the following table of standard reduction...Ch. 17 - Prob. 17.36SPCh. 17 - What is the function of a salt bridge in a...Ch. 17 - Prob. 17.38SPCh. 17 - Describe galvanic cells that use the following...Ch. 17 - Write the standard shorthand notation for each...Ch. 17 - Write the standard shorthand notation for each...Ch. 17 - Prob. 17.42SPCh. 17 - Write the standard shorthand notation for a...Ch. 17 - An H2/H+ half-cell (anode) and an Ag+/Ag half-cell...Ch. 17 - A galvanic cell is constructed from a Zn/Zn2+...Ch. 17 - Prob. 17.46SPCh. 17 - Prob. 17.47SPCh. 17 - Prob. 17.48SPCh. 17 - Prob. 17.49SPCh. 17 - Prob. 17.50SPCh. 17 - Prob. 17.51SPCh. 17 - Prob. 17.52SPCh. 17 - Prob. 17.53SPCh. 17 - Prob. 17.54SPCh. 17 - Prob. 17.55SPCh. 17 - Prob. 17.56SPCh. 17 - Prob. 17.57SPCh. 17 - Prob. 17.58SPCh. 17 - Prob. 17.59SPCh. 17 - Prob. 17.60SPCh. 17 - Prob. 17.61SPCh. 17 - Prob. 17.62SPCh. 17 - Prob. 17.63SPCh. 17 - Prob. 17.64SPCh. 17 - Calculate E and G (in kilojoules) for the cell...Ch. 17 - Prob. 17.66SPCh. 17 - Prob. 17.67SPCh. 17 - Use the data in Appendix D to predict whether the...Ch. 17 - Use the data in Appendix D to predict whether the...Ch. 17 - Prob. 17.70SPCh. 17 - What reaction can occur, if any, when the...Ch. 17 - Consider a galvanic cell that uses the reaction...Ch. 17 - Prob. 17.73SPCh. 17 - Prob. 17.74SPCh. 17 - Prob. 17.75SPCh. 17 - Prob. 17.76SPCh. 17 - What is the Fe2+: Sn2+ concentration ratio in the...Ch. 17 - The Nernst equation applies to both cell reactions...Ch. 17 - Prob. 17.79SPCh. 17 - Prob. 17.80SPCh. 17 - Prob. 17.81SPCh. 17 - Prob. 17.82SPCh. 17 - Prob. 17.83SPCh. 17 - Prob. 17.84SPCh. 17 - Prob. 17.85SPCh. 17 - Prob. 17.86SPCh. 17 - Prob. 17.87SPCh. 17 - Calculate the equilibrium constant at 25 C for the...Ch. 17 - Prob. 17.89SPCh. 17 - For a lead storage battery: (a) Sketch one cell...Ch. 17 - Prob. 17.91SPCh. 17 - Prob. 17.92SPCh. 17 - Prob. 17.93SPCh. 17 - Prob. 17.94SPCh. 17 - Prob. 17.95SPCh. 17 - Prob. 17.96SPCh. 17 - Prob. 17.97SPCh. 17 - Prob. 17.98SPCh. 17 - (a)Sketch a cell with inert electrodes suitable...Ch. 17 - List the anode and cathode half-reactions that...Ch. 17 - Prob. 17.101SPCh. 17 - Prob. 17.102SPCh. 17 - Predict the anode, cathode, and overall cell...Ch. 17 - Prob. 17.104SPCh. 17 - Prob. 17.105SPCh. 17 - How many hours are required to produce 1.00 103...Ch. 17 - Prob. 17.107SPCh. 17 - Prob. 17.108SPCh. 17 - Prob. 17.109SPCh. 17 - Prob. 17.110CHPCh. 17 - Prob. 17.111CHPCh. 17 - Prob. 17.112CHPCh. 17 - Prob. 17.113CHPCh. 17 - Prob. 17.114CHPCh. 17 - Prob. 17.115CHPCh. 17 - Prob. 17.116CHPCh. 17 - Prob. 17.117CHPCh. 17 - Prob. 17.118CHPCh. 17 - The sodium-sulfur battery has molybdenum...Ch. 17 - When suspected drunk drivers are tested with a...Ch. 17 - Consider the addition of the following...Ch. 17 - The following galvanic cell has a potential of...Ch. 17 - A galvanic cell has a silver electrode in contact...Ch. 17 - Prob. 17.124CHPCh. 17 - Prob. 17.125CHPCh. 17 - Prob. 17.126CHPCh. 17 - For the following half-reaction, E = 1.103 V:...Ch. 17 - Prob. 17.128CHPCh. 17 - Prob. 17.129CHPCh. 17 - Prob. 17.130MPCh. 17 - Prob. 17.131MPCh. 17 - Prob. 17.134MPCh. 17 - Prob. 17.135MPCh. 17 - Prob. 17.136MPCh. 17 - Prob. 17.137MPCh. 17 - Experimental solid-oxide fuel cells that use...Ch. 17 - The half-reactions that occur in ordinary alkaline...Ch. 17 - Gold metal is extracted from its ore by treating...Ch. 17 - Consider the redox titration of 100.0 mL of a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Part 1. Aqueous 0.010M AgNO 3 is slowly added to a 50-ml solution containing both carbonate [co32-] = 0.105 M and sulfate [soy] = 0.164 M anions. Given the ksp of Ag2CO3 and Ag₂ soy below. Answer the ff: Ag₂ CO3 = 2 Ag+ caq) + co} (aq) ksp = 8.10 × 10-12 Ag₂SO4 = 2Ag+(aq) + soy² (aq) ksp = 1.20 × 10-5 a) which salt will precipitate first? (b) What % of the first anion precipitated will remain in the solution. by the time the second anion starts to precipitate? (c) What is the effect of low pH (more acidic) condition on the separate of the carbonate and sulfate anions via silver precipitation? What is the effect of high pH (more basic)? Provide appropriate explanation per answerarrow_forwardPart 4. Butanoic acid (ka= 1.52× 10-5) has a partition coefficient of 3.0 (favors benzene) when distributed bet. water and benzene. What is the formal concentration of butanoic acid in each phase when 0.10M aqueous butanoic acid is extracted w❘ 25 mL of benzene 100 mL of a) at pit 5.00 b) at pH 9.00arrow_forwardCalculate activation energy (Ea) from the following kinetic data: Temp (oC) Time (s) 23.0 180. 32.1 131 40.0 101 51.8 86.0 Group of answer choices 0.0269 kJ/mole 2610 kJ/mole 27.6 kJ/mole 0.215 kJ/mole 20.8 kJ/molearrow_forward
- Calculate activation energy (Ea) from the following kinetic data: Temp (oC) Time (s) 23.0 180. 32.1 131 40.0 101 51.8 86.0 choices: 0.0269 kJ/mole 2610 kJ/mole 27.6 kJ/mole 0.215 kJ/mole 20.8 kJ/molearrow_forwardCalculate activation energy (Ea) from the following kinetic data: Temp (oC) Time (s) 23.0 180. 32.1 131 40.0 101 51.8 86.0arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Rank the compounds in each group below according to their reactivity toward electrophilic aromatic substitution (most reactive = 1; least reactive = 3). Place the number corresponding to the compounds' relative reactivity in the blank below the compound. a. CH₂F CH3 F b. At what position, and on what ring, is bromination of phenyl benzoate expected to occur? Explain your answer. :0: C-O phenyl benzoate 6.Consider the reaction below to answer the following questions. A B C NO₂ FeBr3 + Br₂ D a. The nucleophile in the reaction is: BODADES b. The Lewis acid catalyst in the reaction is: C. This reaction proceeds d. Draw the structure of product D. (faster or slower) than benzene.arrow_forwardPart 2. A solution of 6.00g of substance B in 100.0mL of aqueous solution is in equilibrium, at room temperature, wl a solution of B in diethyl ether (ethoxyethane) containing 25.0 g of B in 50.0 mL 9) what is the distribution coefficient of substance B b) what is the mass of B extracted by shaking 200 ml of an aqueous solution containing 10g of B with call at room temp): i) 100 mL of diethyl ether ii) 50ml of diethyl ether twice iii) 25ml of diethyl ether four timesarrow_forward- Rank the following groups of compounds from most acidic (1) to least acidic (4). Place the number corresponding to the compound's relative rank in the blank below the structure. a. NO₂ NO₂ CH2CH2CH2CH2OH CH3 CH3CH2CHOH CH3CH2CH2CH2OH NO₂ CH3CHCH2CH2OH b. OH OH CH₂OH CO₂H HC CN CN CNarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co

General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning

Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Electrolysis; Author: Tyler DeWitt;https://www.youtube.com/watch?v=dRtSjJCKkIo;License: Standard YouTube License, CC-BY