Concept explainers
The 1.5-kg uniform slender bar AB is connected to the 3-kg gear B that meshes with the stationary outer gear C. The centroidal radius of gyration of gear B is 30 mm. Knowing that the system is released from rest in the position shown, determine (a) the angular velocity of the bar as it passes through the vertical position, (b) the corresponding angular velocity of gear B.
Fig. P17.35
Trending nowThis is a popular solution!
Chapter 17 Solutions
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
Additional Engineering Textbook Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Fluid Mechanics Fundamentals And Applications
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
EBK FUNDAMENTALS OF THERMODYNAMICS, ENH
Introduction to Heat Transfer
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
- Each of the gears A and B has a mass of 675 g and a radius of gyration of 40 mm, while gear C has a mass of 3.6 kg and a radius of gyration of 100 mm. Assume that kinetic friction in the bearings of gears A, B C produces couples of constant magnitude 0.15 N.m, 0.15 N.m, 0.3 N.m, respectively. Knowing that the initial angular velocity of gear C is 2000 rpm, determine the time required for the system to come to rest.arrow_forwardIn the gear arrangement shown, gears A and C are attached to rod ABC, that is free to rotate about B, while the inner gear B is fixed. Knowing that the system is at rest, determine the magnitude of the couple M that must be applied to rod ABC, if 2.5 s later the angular velocity of the rod is to be 240 rpm clockwise. Gears A and C ABC weighs 4 lb.arrow_forward16.85 A 3-lb slender rod is welded to a 10-lb uniform disk as shown. The assembly swings freely about C in a vertical plane. Knowing that in the position shown the assembly has an angular velocity of 10 rad's clockwise, determine (a) the angular acceleration of the assembly, (b) the components of the reaction at C. 4 in. Fig. P16.85 6 in. Barrow_forward
- 16.97 through 16.100 A drum of 4-in. radius is attached to a disk of 8-in. radius. The disk and drum have a total weight of 10 lb and combined radius of gyration of 6 in. A cord is attached as shown and pulled with a force P of magnitude 5 lb. Knowing that the disk rolls without sliding, determine (a) the angular acceleration of the disk and the acceleration of G, (b) the minimum value of the coefficient of static friction compatible with this motion. Fig. P16.93 and P16.97arrow_forwardA 40-kg flywheel of radius R = 0.5 m is rigidly attached to a shaft of radius r = 0.05 m that can roll along parallel rails. A cord is attached as shown and pulled with a force P of magnitude 150 N. Knowing the centroidal radius of gyration is k = 0.4 m, determine (a) the angular acceleration of the flywheel, (b) the velocity of the center of gravity after 5 s. 15° Parrow_forwardTwo uniform cylinders, each of mass m = 6 kg and radius r = 125 mm, are connected by a belt as shown. Knowing that at the instant shown the angular velocity of cylinder A is 30 rad/s counterclockwise, determine (a) the time required for the angular velocity of cylinder A to be reduced to 5 rad/s, (b) the tension in the portion of belt connecting the two cylinders.arrow_forward
- 3. (17.21) A collar at point C with a mass of 1 kg is rigidly attached at a distance d = 300 mm from the end of a uniform slender rod AB. The rod has a mass of 3 kg and has a length of L = 600 mm. Knowing that the rod is released from rest in the position shown, determine the angular velocity of the rod after it has rotated through 90°. Notes: Ignore rotation of the collar since its dimensions are negligible. The controidal moment of inertia of the rod is I = m[² 12 L d Position 1 Position 1 B B A Position 2 L A' ctivate Windowsarrow_forwardThe rotor of an electric motor has an angular velocity of 3520 rpm when the load and power are cut off. The 110-lb rotor, which has a centroidal radius of gyration of 9 in., then coasts to rest. Knowing that the kinetic friction of the rotor produces a couple of magnitude 2.5 lb-ft, determine the number of revolutions that the rotor executes before coming to rest. The number of revolutions that the rotor executes before coming to rest is rev.arrow_forwardThe 200-mm radius brake drum is attached to a larger flywheel that is not shown. The total mass moment of inertia of the drum and the flywheel is 20 kg.m² and the coefficient of kinetic friction between the drum and the brake shoe at B is 0.35. Knowing that the angular velocity of the flywheel is 360 rpm counterclockwise when a force P of magnitude 350 N is applied to the pedal C, determine the number of revolutions executed by the flywheel before it comes to rest. 150 mm 250 mm 200 mm B 375 mmarrow_forward
- 17.1 It is known that 1500 revolutions are required for the 2720-kg flywheel to coast to rest from an angular velocity of 300 rpm. Knowing that the radius of gyration of the flywheel is 914 mm, determine the average mag. nitude of the couple due to kinetic friction in the bearings.arrow_forwardThe rotor of an electric motor has an angular velocity of 3600 rpm when the load and power are cut off. The 121-lb rotor, which has a centroidal radius of gyration of 9 in., then coasts to rest. Knowing that kinetic friction results in a couple of magnitude 2.5 lb-ft exerted on the rotor, determine the number of revolutions that the rotor executes before coming to rest. The number of revolutions that the rotor executes before coming to rest isarrow_forwardA semicircular panel with a radius r is attached with hinges to a circular plate with a radius r and initially is held in the vertical position as shown. The plate and the panel are made of the same material and have the same thickness. Knowing that the entire assembly is rotating freely with an initial angular velocity of w0 , determine the angular velocity of the assembly after the panel has been released and comes to rest against the plate.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY