Concept explainers
A slender rod of length l and mass m is pivoted about a point C located at a distance b from its center G. It is released from rest in a horizontal position and swings freely. Determine (a) the angular velocity of the rod as it passes through a vertical position if b = l/2, (b) the distance b for which the angular velocity of the rod as it passes through a vertical position is maximum, (c) the corresponding values of its angular velocity and of the reaction at C using the value of b calculated.
Fig. P17.16
(a)
Find the angular velocity of the rod when
Answer to Problem 17.16P
The angular velocity of the rod when
Explanation of Solution
Show the free-body diagram of the given condition as in Figure 1.
Find the mass moment of inertia of the slender rod
Here, the mass of the slender rod is m and the length of the slender rod is l.
Position 1 (Horizontal position):
The angular velocity
The velocity
Find the total kinetic energy in the horizontal position
Substitute 0 for
Positon 2 (Vertical position):
Find the velocity of the slender rod
Find the total kinetic energy in the vertical position
Substitute
Find the work done
Here, the acceleration due to gravity is g.
Write the equation of work and energy for the system using the equation.
Substitute 0 for
Therefore, the angular velocity of the rod when
(b)
Find the distance b for which the angular velocity of rod as it passes through a vertical position is maximum.
Answer to Problem 17.16P
The distance b for which the angular velocity of the rod is maximum in vertical position is
Explanation of Solution
Position 1 (Horizontal position):
Show the free-body diagram of the horizontal position as in Figure 2.
Find the mass moment of inertia of the slender rod
The angular velocity
The velocity
Find the total kinetic energy in the horizontal position
Substitute 0 for
The elevation (h) of the pivot C is zero.
Find the total potential energy
Substitute 0 for h.
Positon 2 (Vertical position):
Show the free-body diagram of the vertical position as in Figure 3.
Find the velocity of the slender rod
Find the total kinetic energy in the vertical position
Substitute
The elevation of the pivot C is
Find the total potential energy
Substitute b for h.
Write the equation of conservation of energy using the equation.
Substitute 0 for
Integrate the angular velocity with respect to b and equate to zero.
Therefore, the distance b for which the angular velocity of the rod is maximum in vertical position is
(c)
Find the angular velocity where the vertical position is maximum and the reaction at pivot C.
Answer to Problem 17.16P
The angular velocity corresponding to the maximum vertical position is
The reaction at pivot C is
Explanation of Solution
Refer to the calculation of part (b):
Substitute
Therefore, the angular velocity corresponding to the maximum vertical position is
Show the free-body diagram of the slender rod as in Figure 4.
Find the normal acceleration
Substitute
The value of tangential acceleration is
Resolve the vertical component of forces.
Take moment about point C as follows;
Therefore,
Resolve the horizontal component of forces.
Find the resultant reaction at point C using the relation.
Substitute 0 for
Therefore, the reaction at pivot C is
Want to see more full solutions like this?
Chapter 17 Solutions
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
Additional Engineering Textbook Solutions
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
HEAT+MASS TRANSFER:FUND.+APPL.
Fundamentals Of Thermodynamics
Statics and Mechanics of Materials
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
DESIGN OF MACHINERY
- 4. Each of the gears A and B has a mass of 2.4 kg and a radius of gyration of 60 mm, while gear C has a mass of 12 kg and a radius of gyration of 150 mm. A couple M of constant magnitude 10 Nm is applied to gear C. Determine (a) the number of revolutions of gear C required for its angular velocity to increase from 100 to 450 rpm, (b) the corresponding tangential force acting on gear A. В S0 mm, S0 mm 200 mm. Marrow_forwardDo not copy other solutions. Write your solutions neatly with boxed answers. Thank you.arrow_forwardEach of the gears A and B has a mass of 675 g and a radius of gyration of 40 mm, while gear C has a mass of 3.6 kg and a radius of gyration of 100 mm. Assume that kinetic friction in the bearings of gears A, B C produces couples of constant magnitude 0.15 N.m, 0.15 N.m, 0.3 N.m, respectively. Knowing that the initial angular velocity of gear C is 2000 rpm, determine the time required for the system to come to rest.arrow_forward
- A 1-m-long uniform slender bar AB has an angular velocity of 12 rad/s and its center of gravity has a velocity of 2 m/s as shown. About which point is the angular momentum of A smallest at this instant? P1 P2 P3 P4 It is the same about all the points.arrow_forwardTwo uniform cylinders, each of mass m = 6 kg and radius r = 125 mm, are connected by a belt as shown. If the system is released from rest when t = 0, determine (a ) the velocity of the center of cylinder B at t=3s, ( b) the tension in the portion of belt connecting the two cylinders.arrow_forwardA solid rectangular parallelepiped of mass m has a square base of side a and a length 2a. Knowing that it rotates at the constant rate v about its diagonal AC’ and that its rotation is observed from A as counterclockwise, determine (a) the magnitude of the angular momentum HG of the parallelepiped about its mass center G, (b) the angle that HG forms with the diagonal AC’.arrow_forward
- The rotor of an electric motor has an angular velocity of 3600 rpm when the load and power are cut off. The 121-lb rotor, which has a centroidal radius of gyration of 9 in., then coasts to rest. Knowing that kinetic friction results in a couple of magnitude 2.5 lb-ft exerted on the rotor, determine the number of revolutions that the rotor executes before coming to rest. The number of revolutions that the rotor executes before coming to rest isarrow_forwardTwo uniform cylinders, each of weight W = 14 lb and radius r = 5 in., are connected by a belt as shown. If the system is released from rest, determine (a ) the velocity of the center of cylinder A after it has moved through 3 ft, (b) the tension in the portion of belt connecting the two cylinders.arrow_forwardA half-cylinder with mass m and radius r is released from rest in the position shown. Knowing that the half-cylinder rolls without sliding, determine (a ) its angular velocity after it has rolled through 90°, (b ) the reaction at the horizontal surface at the same instant. [Hint: Not that GO = 4r/3 π and that, by the parallel-axis theorem,arrow_forward
- R B R с D The motion of a slender rod of length 0.545 m is guided by pins at A and B which slide freely in slots cut in a vertical plate as shown. If end B is moved slightly to the left and then released, determine the angular velocity of the rod and the velocity of its mass center (a) at the instant when the velocity of end B is zero, (b) as end B passes through Point D.arrow_forwardIf the earth were a sphere, the gravitational attraction of the sun, moon, and planets would at all times be equivalent to a single force R acting at the mass center of the earth. However, the earth is actually an oblate spheroid and the gravitational system acting on the earth is equivalent to a force R and a couple M. Knowing that the effect of the couple M is to cause the axis of the earth to precess about the axis GA at the rate of one revolution in 25 800 years, determine the average magnitude of the couple M applied to the earth. Assume that the average density of the earth is 5.51 g/cm 3 , that the average radius of the earth is 6370 km, and that ( Note: This forced precession is known as the precession of the equinoxes and is not to be confused with the free precession discussed in Prob. 18.123.)arrow_forwardD C Answer: B 0.4 m- 0.4 m Two identical slender rods AB and BC are welded together to form an L-shaped assembly. The assembly is pressed against a spring at D and released from the position shown. Knowing that the maximum angle of rotation of the assembly in its subsequent motion is 58° with the horizontal (counterclockwise), determine the magnitude of the angular velocity of the assembly as it passes through the position where rod AB forms an angle of 27° with the horizontal.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY