Concept explainers
(a)
Find the change in the angular velocity of the turbine disk.
(a)

Answer to Problem 17.24P
The change in angular velocity of the turbine disk is
Explanation of Solution
Given information:
The mass of the turbine disk is
The centroidal radius of gyration of the turbine disk is
The angular velocity of the small blade is
The weight of the small blade is
The centroidal radius of the blade is
The angle the turbine disk rotates is
Position 1:
Find the mass of inertia about point O
Here, the acceleration due to gravity is g.
Consider the acceleration due to gravity is
Substitute 30 kg for
Find the location of mass center
Position 1
The angular velocity at the position 1 is
Find the total kinetic energy
Substitute
Find the total potential energy
Here, the conditional center of gravity is
In this case, the center of gravity lies at the point O. so,
Substitute 0 for
Position 2
Find the total kinetic energy
Substitute
Find the total potential energy
Here, the conditional center of gravity is
In this case, the center of gravity lies at the point O. so,
Substitute
Substitute 30 kg for
Write the equation of conservation of energy as follows;
Substitute 18.04480 J for
Find the change in angular velocity
Substitute 59.75 rpm for
Therefore, the change in angular velocity of the turbine disk is
(b)
Find the change in the angular velocity of the turbine disk.
(b)

Answer to Problem 17.24P
The change in angular velocity of the turbine disk is
Explanation of Solution
Given information:
The mass of the turbine disk is
The centroidal radius of gyration of the turbine disk is
The angular velocity of the small blade is
The weight of the small blade is
The centroidal radius of the blade is
The angle the turbine disk rotates is
Position 1:
Find the mass of inertia about point O
Here, the acceleration due to gravity is g.
Consider the acceleration due to gravity is
Substitute 30 kg for
Find the location of mass center
Position 1
The angular velocity at the position 1 is
Find the total kinetic energy
Substitute
Find the total potential energy
Here, the conditional center of gravity is
In this case, the center of gravity lies at the point O. so,
Substitute 0 for
Position 3
Find the total kinetic energy
Substitute
Find the total potential energy
Here, the conditional center of gravity is
In this case, the center of gravity lies at the point O. so,
Substitute
Substitute 30 kg for
Write the equation of conservation of energy as follows;
Substitute 18.04480 J for
Find the change in angular velocity
Substitute 60.249 rpm for
Therefore, the change in angular velocity of the turbine disk is
Want to see more full solutions like this?
Chapter 17 Solutions
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
- The flow rate is 12.275 Liters/s and the diameter is 6.266 cm.arrow_forwardAn experimental setup is being built to study the flow in a large water main (i.e., a large pipe). The water main is expected to convey a discharge (Qp). The experimental tube will be built at a length scale of 1/20 of the actual water main. After building the experimental setup, the pressure drop per unit length in the model tube (APm/Lm) is measured. Problem (20): Given the value of APm/Lm [kPa/m], and assuming pressure coefficient similitude, calculate the drop in the pressure per unit length of the water main (APP/Lp) in [Pa/m]. Givens: AP M/L m = 590.637 kPa/m meen Answers: ( 1 ) 59.369 Pa/m ( 2 ) 73.83 Pa/m (3) 95.443 Pa/m ( 4 ) 44.444 Pa/m *******arrow_forwardFind the reaction force in y if Ain = 0.169 m^2, Aout = 0.143 m^2, p_in = 0.552 atm, Q = 0.367 m^3/s, α = 31.72 degrees. The pipe is flat on the ground so do not factor in weight of the pipe and fluid.arrow_forward
- Find the reaction force in x if Ain = 0.301 m^2, Aout = 0.177 m^2, p_in = 1.338 atm, Q = 0.669 m^3/s, and α = 37.183 degreesarrow_forwardProblem 5: Three-Force Equilibrium A structural connection at point O is in equilibrium under the action of three forces. • • . Member A applies a force of 9 kN vertically upward along the y-axis. Member B applies an unknown force F at the angle shown. Member C applies an unknown force T along its length at an angle shown. Determine the magnitudes of forces F and T required for equilibrium, assuming 0 = 90° y 9 kN Aarrow_forwardProblem 19: Determine the force in members HG, HE, and DE of the truss, and state if the members are in tension or compression. 4 ft K J I H G B C D E F -3 ft -3 ft 3 ft 3 ft 3 ft- 1500 lb 1500 lb 1500 lb 1500 lb 1500 lbarrow_forward
- Problem 14: Determine the reactions at the pin A, and the tension in cord. Neglect the thickness of the beam. F1=26kN F2 13 12 80° -2m 3marrow_forwardProblem 22: Determine the force in members GF, FC, and CD of the bridge truss and state if the members are in tension or compression. F 15 ft B D -40 ft 40 ft -40 ft 40 ft- 5 k 10 k 15 k 30 ft Earrow_forwardProblem 20: Determine the force in members BC, HC, and HG. After the truss is sectioned use a single equation of equilibrium for the calculation of each force. State if the members are in tension or compression. 5 kN 4 kN 4 kN 3 kN 2 kN B D E F 3 m -5 m- -5 m- 5 m 5 m-arrow_forward
- An experimental setup is being built to study the flow in a large water main (i.e., a large pipe). The water main is expected to convey a discharge (Qp). The experimental tube will be built at a length scale of 1/20 of the actual water main. After building the experimental setup, the pressure drop per unit length in the model tube (APm/Lm) is measured. Problem (19): Given the value of Qp [m³/s], and assuming Reynolds number similitude between the water main and experimental tube, calculate the flow rate in the model tube (Qm) in [lit/s]. = 30.015 m^3/sarrow_forwardProblem 11: The lamp has a weight of 15 lb and is supported by the six cords connected together as shown. Determine the tension in each cord and the angle 0 for equilibrium. Cord BC is horizontal. E 30° B 60° Aarrow_forwardProblem 10: If the bucket weighs 50 lb, determine the tension developed in each of the wires. B $30° 5 E D 130°arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





