Concept explainers
A 100-kg solid cylindrical disk, 800 mm in diameter, is to be raised over a 200-mm obstruction. A cable is wrapped around the disk and pulled with a constant horizontal force T as shown. Knowing that the disk rotates about the corner of the obstruction and that the angular velocity of the disk is 1 rad/s when it has reached the top of the obstruction, determine the force T.
Fig. P17.25 and P17.26
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
VEC MECH 180-DAT EBOOK ACCESS(STAT+DYNA)
Additional Engineering Textbook Solutions
Introduction to Heat Transfer
Degarmo's Materials And Processes In Manufacturing
Fluid Mechanics Fundamentals And Applications
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Fundamentals Of Thermodynamics
Automotive Technology: Principles, Diagnosis, and Service (5th Edition)
- The 10-in.-radius brake drum is attached to a larger flywheel which is not shown. The total mass moment of inertia of the flywheel and drum is 22 lb ⋅ ft ⋅ s 2 and the coefficient of kinetic friction between the drum and the brake shoe is 0.41. Knowing that the initial angular velocity is 255 rpm clockwise, determine the force which must be exerted by the hydraulic cylinder at point B if the system is to stop in 85 revolutions.arrow_forwardThe 12-lb uniform disk shown has a radius of r = 3.2 in. and rotates counterclockwise. Its center C is constrained to move in a slot cut in the vertical member AB, and an 11-lb horizontal force P is applied at B to maintain contact at D between the disk and the vertical wall. The disk moves downward under the influence of gravity and the friction at D. Knowing that the coefficient of kinetic friction between the disk and the wall is 0.12 and neglecting friction in the vertical slot, determine (a) the angular acceleration of the disk, (b) the acceleration of the center C of the disk.arrow_forwardThe shutter shown was formed by removing one quarter of a disk of 0.75-in. radius and is used to interrupt a beam of light emanating from a lens at C. Knowing that the shutter weighs 0.125 lb and rotates at the constant rate of 24 cycles per second, determine the magnitude of the force exerted by the shutter on the shaft at Aarrow_forward
- 3arrow_forwardThe 8-in. radius brake drum is attached to a larger flywheel that is not shown. The total mass moment of inertia of the drum and the flywheel is 15 Ib.ft.s2 and the coefficient of kinetic friction between the drum and the brake shoe is 0.40. Knowing that the angular velocity of the flywheel is 450 rpm clockwise when a force P of magnitude 65 lbf. is applied to the pedal C, determine the number of the revolutions executed by the flywheel before it comes to rest. 6 in. 10 in. 8 in. 15 in.arrow_forwardThe flywheel of a punching machine has a mass of 300 kg and a radius of gyration of 600 mm. Each punching operation requires 2500 J of work. (a ) Knowing that the speed of the flywheel is 300 rpm just before a punching, determine the speed immediately after the punching. (b) If a constant 25-N.m couple is applied to the shaft of the flywheel, determine the number of revolutions executed before the speed is again 300 rpm.arrow_forward
- A 40-kg flywheel of radius R = 0.5 m is rigidly attached to a shaft of radius r = 0.05 m that can roll along parallel rails. A cord is attached as shown and pulled with a force P of magnitude 150 N. Knowing the centroidal radius of gyration is k = 0.4 m, determine (a) the angular acceleration of the flywheel, (b) the velocity of the center of gravity after 5 s. 15° Parrow_forwardThe 8-in. radius brake drum is attached to a larger flywheel that is not shown. The total mass moment of inertia of the drum and the flywheel is 15 lb.ft.s2 and the coefficient of kinetic friction between the drum and the brake shoe is 0.40. Knowing that the angular velocity of the flywheel is 450 rpm clockwise when a force P of magnitude 65 lbf. is applied to the pedal C, determine the number of the revolutions executed by the flywheel before it comes to rest. (The final answer should be in two decimal places with correct units)arrow_forwardA 9-kg uniform disk is attached to the 5-kg slender rod AB by means of frictionless pins at B and C. The assembly rotates in a vertical plane under the combined effect of gravity and of a couple M that is applied to rod AB. Knowing that at the instant shown the assembly has an angular velocity of 6 rad/s and an angular acceleration of 25 rad/s2 , both counterclockwise, determine (a) the couple M, (b) the force exerted by pin C on member ABarrow_forward
- Please display all workarrow_forwardTwo uniform cylinders, each of mass m = 6 kg and radius r = 125 mm, are connected by a belt as shown. Knowing that at the instant shown the angular velocity of cylinder A is 30 rad/s counterclockwise, determine (a) the time required for the angular velocity of cylinder A to be reduced to 5 rad/s, (b) the tension in the portion of belt connecting the two cylinders.arrow_forwardTwo uniform cylinders, each of weight W = 14 lb and radius r = 5 in., are connected by a belt as shown. Knowing that at the instant shown the angular velocity of cylinder B is 30 rad/s clockwise, determine (a) the distance through which cylinder A will rise before the angular velocity of cylinder B is reduced to 5 rad/s, (b ) the tension in the portion of belt connecting the two cylinders.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY