
Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 17, Problem 8RQ
Why is lubrication often a major concern in metal forming?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Hello I was going over the solution for this probem and I'm a bit confused on the last part. Can you please explain to me 1^4 was used for the Co of the tubular cross section? Thank you!
Blood (HD = 0.45 in large diameter tubes) is forced through hollow fiber tubes that are 20 µm in diameter.Equating the volumetric flowrate expressions from (1) assuming marginal zone theory and (2) using an apparentviscosity for the blood, estimate the marginal zone thickness at this diameter. The viscosity of plasma is 1.2 cP
Q2: Find the shear load on bolt A for the
connection shown in Figure 2.
Dimensions are in mm
Fig. 2
24
0-0
0-0
A
180kN
(10 Mark
Chapter 17 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 17 - What is plasticity?Ch. 17 - What are some of the general assets of the...Ch. 17 - Why might large production quantities be necessary...Ch. 17 - What types of deformation may occur in forming...Ch. 17 - What is an independent variable in a...Ch. 17 - What are some considerations regarding selection...Ch. 17 - What is the significance of tool and die geometry...Ch. 17 - Why is lubrication often a major concern in metal...Ch. 17 - What are some of the secondary effects that may...Ch. 17 - Prob. 10RQ
Ch. 17 - Why is it important to be able to predict the...Ch. 17 - Prob. 12RQCh. 17 - Prob. 13RQCh. 17 - Prob. 14RQCh. 17 - Prob. 15RQCh. 17 - Prob. 16RQCh. 17 - Prob. 17RQCh. 17 - What are some of the features that may be...Ch. 17 - What features have contributed to the expanded use...Ch. 17 - What are some of the uses or applications of...Ch. 17 - Prob. 21RQCh. 17 - Prob. 22RQCh. 17 - Prob. 23RQCh. 17 - What type of information about the material being...Ch. 17 - Prob. 25RQCh. 17 - Why is friction such an important parameter in...Ch. 17 - Why are friction effects in metalworking difficult...Ch. 17 - Prob. 28RQCh. 17 - Prob. 29RQCh. 17 - Prob. 30RQCh. 17 - Prob. 31RQCh. 17 - Discuss the significance of wear in metal forming:...Ch. 17 - Lubricants are often selected for properties in...Ch. 17 - What is tribology?Ch. 17 - What are some of the common types of metal forming...Ch. 17 - What is hydrodynamic lubrication? What are some of...Ch. 17 - If the temperature of a material is increased,...Ch. 17 - Define the various regimes of cold working, warm...Ch. 17 - What is an acceptable definition of hot working?...Ch. 17 - What are some of the attractive manufacturing and...Ch. 17 - What are some of the negative aspects of hot...Ch. 17 - Prob. 42RQCh. 17 - Prob. 43RQCh. 17 - If the deformed grains recrystallize during hot...Ch. 17 - Why might a rolled thread offer improved strength...Ch. 17 - How might the temperature of a deforming workpiece...Ch. 17 - Why are heated dies or tools often employed in...Ch. 17 - What generally restricts the upper temperature to...Ch. 17 - What is the primary cause of residual stresses in...Ch. 17 - What is cold working?Ch. 17 - Compared to hot working, what are some of the...Ch. 17 - What are some of the disadvantages of...Ch. 17 - How could cold working be used to reduce the cost...Ch. 17 - Why are cold�forming processes best suited for...Ch. 17 - How can the tensile test properties of a metal be...Ch. 17 - Why is elastic springback an important...Ch. 17 - What is pickling, and how does it remove surface...Ch. 17 - Prob. 58RQCh. 17 - What engineering properties are likely to decline...Ch. 17 - Prob. 60RQCh. 17 - Prob. 61RQCh. 17 - Prob. 62RQCh. 17 - What are some of the advantages of warm forming...Ch. 17 - Prob. 64RQCh. 17 - What material feature is considered to be the...Ch. 17 - Why is isothermal forming considerably more...Ch. 17 - Prob. 67RQCh. 17 - Prob. 1PCh. 17 - Prob. 2PCh. 17 - List and discuss the various economic factors that...Ch. 17 - Prob. 4PCh. 17 - Prob. 5PCh. 17 - Prob. 6PCh. 17 - Prob. 1.1CSCh. 17 - Prob. 1.2CSCh. 17 - Which stainless steel would you recommend? Begin...Ch. 17 - Prob. 1.4CSCh. 17 - Prob. 1.5CSCh. 17 - After drawing and perforating, the residual...Ch. 17 - One of the blades has struck a rock and is badly...Ch. 17 - A second propeller, identical to the one above,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- determine the direction and magnitude of angular velocity ω3 of link CD in the four-bar linkage using the relative velocity graphical methodarrow_forwardFour-bar linkage mechanism, AB=40mm, BC=60mm, CD=70mm, AD=80mm, =60°, w1=10rad/s. Determine the direction and magnitude of w3 using relative motion graphical method. A B 2 3 77777 477777arrow_forwardFour-bar linkage mechanism, AB=40mm, BC=60mm, CD=70mm, AD=80mm, =60°, w1=10rad/s. Determine the direction and magnitude of w3 using relative motion graphical method. A B 2 3 77777 477777arrow_forward
- The evaporator of a vapor compression refrigeration cycle utilizing R-123 as the refrigerant isbeing used to chill water. The evaporator is a shell and tube heat exchanger with the water flowingthrough the tubes. The water enters the heat exchanger at a temperature of 54°F. The approachtemperature difference of the evaporator is 3°R. The evaporating pressure of the refrigeration cycleis 4.8 psia and the condensing pressure is 75 psia. The refrigerant is flowing through the cycle witha flow rate of 18,000 lbm/hr. The R-123 leaves the evaporator as a saturated vapor and leaves thecondenser as a saturated liquid. Determine the following:a. The outlet temperature of the chilled waterb. The volumetric flow rate of the chilled water (gpm)c. The UA product of the evaporator (Btu/h-°F)d. The heat transfer rate between the refrigerant and the water (tons)arrow_forward(Read image) (Answer given)arrow_forwardProblem (17): water flowing in an open channel of a rectangular cross-section with width (b) transitions from a mild slope to a steep slope (i.e., from subcritical to supercritical flow) with normal water depths of (y₁) and (y2), respectively. Given the values of y₁ [m], y₂ [m], and b [m], calculate the discharge in the channel (Q) in [Lit/s]. Givens: y1 = 4.112 m y2 = 0.387 m b = 0.942 m Answers: ( 1 ) 1880.186 lit/s ( 2 ) 4042.945 lit/s ( 3 ) 2553.11 lit/s ( 4 ) 3130.448 lit/sarrow_forward
- Problem (14): A pump is being used to lift water from an underground tank through a pipe of diameter (d) at discharge (Q). The total head loss until the pump entrance can be calculated as (h₁ = K[V²/2g]), h where (V) is the flow velocity in the pipe. The elevation difference between the pump and tank surface is (h). Given the values of h [cm], d [cm], and K [-], calculate the maximum discharge Q [Lit/s] beyond which cavitation would take place at the pump entrance. Assume Turbulent flow conditions. Givens: h = 120.31 cm d = 14.455 cm K = 8.976 Q Answers: (1) 94.917 lit/s (2) 49.048 lit/s ( 3 ) 80.722 lit/s 68.588 lit/s 4arrow_forwardProblem (13): A pump is being used to lift water from the bottom tank to the top tank in a galvanized iron pipe at a discharge (Q). The length and diameter of the pipe section from the bottom tank to the pump are (L₁) and (d₁), respectively. The length and diameter of the pipe section from the pump to the top tank are (L2) and (d2), respectively. Given the values of Q [L/s], L₁ [m], d₁ [m], L₂ [m], d₂ [m], calculate total head loss due to friction (i.e., major loss) in the pipe (hmajor-loss) in [cm]. Givens: L₁,d₁ Pump L₂,d2 오 0.533 lit/s L1 = 6920.729 m d1 = 1.065 m L2 = 70.946 m d2 0.072 m Answers: (1) 3.069 cm (2) 3.914 cm ( 3 ) 2.519 cm ( 4 ) 1.855 cm TABLE 8.1 Equivalent Roughness for New Pipes Pipe Riveted steel Concrete Wood stave Cast iron Galvanized iron Equivalent Roughness, & Feet Millimeters 0.003-0.03 0.9-9.0 0.001-0.01 0.3-3.0 0.0006-0.003 0.18-0.9 0.00085 0.26 0.0005 0.15 0.045 0.000005 0.0015 0.0 (smooth) 0.0 (smooth) Commercial steel or wrought iron 0.00015 Drawn…arrow_forwardThe flow rate is 12.275 Liters/s and the diameter is 6.266 cm.arrow_forward
- An experimental setup is being built to study the flow in a large water main (i.e., a large pipe). The water main is expected to convey a discharge (Qp). The experimental tube will be built at a length scale of 1/20 of the actual water main. After building the experimental setup, the pressure drop per unit length in the model tube (APm/Lm) is measured. Problem (20): Given the value of APm/Lm [kPa/m], and assuming pressure coefficient similitude, calculate the drop in the pressure per unit length of the water main (APP/Lp) in [Pa/m]. Givens: AP M/L m = 590.637 kPa/m meen Answers: ( 1 ) 59.369 Pa/m ( 2 ) 73.83 Pa/m (3) 95.443 Pa/m ( 4 ) 44.444 Pa/m *******arrow_forwardFind the reaction force in y if Ain = 0.169 m^2, Aout = 0.143 m^2, p_in = 0.552 atm, Q = 0.367 m^3/s, α = 31.72 degrees. The pipe is flat on the ground so do not factor in weight of the pipe and fluid.arrow_forwardFind the reaction force in x if Ain = 0.301 m^2, Aout = 0.177 m^2, p_in = 1.338 atm, Q = 0.669 m^3/s, and α = 37.183 degreesarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License