The reduction potential of two half-cell reaction involving iron is given. The value of K sp for iron sulfide (II) is to be calculated. Concept introduction: The relationship between reduction potential and standard reduction potential value and activities of species present in an electrochemical cell at a given temperature is given by the Nernst equation. The value of E cell is calculated using Nernst formula, E = E ° − ( R T n F ) ln ( Q ) At room temperature the above equation is specifies as, E = E ° − ( 0.0591 n ) log ( Q ) This relation is further used to determine the relation between Δ G ° and K , Δ G ° and E ° cell . Solubility product is applied only for those ionic compounds that are sparingly soluble. The product of solubility of ions is called solubility product and solubility is present in moles per liter. To determine: The value of K sp for iron sulfide (II).
The reduction potential of two half-cell reaction involving iron is given. The value of K sp for iron sulfide (II) is to be calculated. Concept introduction: The relationship between reduction potential and standard reduction potential value and activities of species present in an electrochemical cell at a given temperature is given by the Nernst equation. The value of E cell is calculated using Nernst formula, E = E ° − ( R T n F ) ln ( Q ) At room temperature the above equation is specifies as, E = E ° − ( 0.0591 n ) log ( Q ) This relation is further used to determine the relation between Δ G ° and K , Δ G ° and E ° cell . Solubility product is applied only for those ionic compounds that are sparingly soluble. The product of solubility of ions is called solubility product and solubility is present in moles per liter. To determine: The value of K sp for iron sulfide (II).
Solution Summary: The author explains that the reduction potential of two half-cell reactions involving iron is given. The value of K_sp for iron sulfide (II) is calculated
Definition Definition Chemical reactions involving both oxidation and reduction processes. During a redox reaction, electron transfer takes place in such a way that one chemical compound gets reduced and the other gets oxidized.
Chapter 17, Problem 89E
Interpretation Introduction
Interpretation:
The reduction potential of two half-cell reaction involving iron is given. The value of
Ksp for iron sulfide (II) is to be calculated.
Concept introduction:
The relationship between reduction potential and standard reduction potential value and activities of species present in an electrochemical cell at a given temperature is given by the Nernst equation.
The value of
Ecell is calculated using Nernst formula,
E=E°−(RTnF)ln(Q)
At room temperature the above equation is specifies as,
E=E°−(0.0591n)log(Q)
This relation is further used to determine the relation between
ΔG° and
K ,
ΔG° and
E°cell.
Solubility product is applied only for those ionic compounds that are sparingly soluble. The product of solubility of ions is called solubility product and solubility is present in moles per liter.
To determine: The value of
Ksp for iron sulfide (II).
Draw the Fischer projection of D-fructose.
Click and drag to start drawing a
structure.
Skip Part
Check
AP
14
tv
SC
F1
F2
80
F3
a
F4
!
2
#
3
CF
F5
75
Ax
MacBook Air
894
$
5olo
%
Λ
6 >
W
F6
K
F7
&
Consider this step in a radical reaction:
Y
What type of step is this? Check all that apply.
Draw the products of the step on the right-hand side of the drawing area
below. If more than one set of products is possible, draw any set.
Also, draw the mechanism arrows on the left-hand side of the drawing
area to show how this happens.
ionization
propagation
initialization
passivation
none of the above
22.16 The following groups are ortho-para directors.
(a)
-C=CH₂
H
(d)
-Br
(b)
-NH2
(c)
-OCHS
Draw a contributing structure for the resonance-stabilized cation formed during elec-
trophilic aromatic substitution that shows the role of each group in stabilizing the
intermediate by further delocalizing its positive charge.
22.17 Predict the major product or products from treatment of each compound with
Cl₁/FeCl₂-
OH
(b)
NO2
CHO
22.18 How do you account for the fact that phenyl acetate is less reactive toward electro-
philic aromatic substitution than anisole?
Phenyl acetate
Anisole
CH
(d)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.