(a)
Interpretation:
The oxidation number has to be assigned to each atom of the given reaction. The substance that is oxidized, reduced, oxidizing agent and reducing agent have to be stated.
Concept Introduction:
(a)
Answer to Problem 7QRT
The oxidation number of
The oxidation number of
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element in its native form is zero. So, the oxidation number of
In almost all compounds oxidation number of bromine is
Apply charge balance formula in
Therefore, the oxidation number of iron in
The element that gets oxidized reduces the other one and is known as reducing agent. The element that gets reduced oxidizes the other one and is known as oxidizing agent.
In the given reaction, the oxidation number of
The oxidation number of
(b)
Interpretation:
The oxidation number has to be assigned to each atom of the given reaction. The substance that is oxidized, reduced, oxidizing agent and reducing agent have to be stated.
Concept Introduction:
Refer to part (a).
(b)
Answer to Problem 7QRT
The oxidation number of
The oxidation number of
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element in its native form is zero. So, the oxidation number of
In almost all compounds oxidation number of chlorine is
Apply charge balance formula in
Therefore, the oxidation number of aluminium in
The element that gets oxidized reduces the other one and is known as reducing agent. The element that gets reduced oxidizes the other one and is known as oxidizing agent.
In the given reaction, the oxidation number of
The oxidation number of
(c)
Interpretation:
The oxidation number has to be assigned to each atom of the given reaction. The substance that is oxidized, reduced, oxidizing agent and reducing agent have to be stated.
Concept Introduction:
Refer to part (a).
(c)
Answer to Problem 7QRT
The oxidation number of sulfur changes from
The oxidation number of
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element in its native form is zero. So, the oxidation number of
In almost all compounds oxidation number of iodine is
Apply charge balance formula in
Therefore, the oxidation number of sulfur in
Apply charge balance formula in
Therefore, the oxidation number of sulfur in
The element that gets oxidized reduces the other one and is known as reducing agent. The element that gets reduced oxidizes the other one and is known as oxidizing agent.
In the given reaction, the oxidation number of sulfur changes from
The oxidation number of
(d)
Interpretation:
The oxidation number has to be assigned to each atom of the given reaction. The substance that is oxidized, reduced, oxidizing agent and reducing agent have to be stated.
Concept Introduction:
Refer to part (a).
(d)
Answer to Problem 7QRT
The oxidation number of
The oxidation number of
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element carrying charge is equal to that charge. So, the oxidation number of
In almost all compounds oxidation number of hydrogen is
Apply charge balance formula in
Therefore, the oxidation number of oxygen in
Apply charge balance formula in
Therefore, the oxidation number of oxygen in
The element that gets oxidized reduces the other one and is known as reducing agent. The element that gets reduced oxidizes the other one and is known as oxidizing agent.
In the given reaction, the oxidation number of
The oxidation number of
(e)
Interpretation:
The oxidation number has to be assigned to each atom of the given reaction. The substance that is oxidized, reduced, oxidizing agent and reducing agent have to be stated.
Concept Introduction:
Refer to part (a).
(e)
Answer to Problem 7QRT
The oxidation number of
In the given reaction, the oxidation number of
The oxidation number of
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element carrying charge is equal to that charge. So, the oxidation number of
In almost all compounds oxidation number of hydrogen is
Apply charge balance formula in
Therefore, the oxidation number of nitrogen in
Apply charge balance formula in
Therefore, the oxidation number of nitrogen in
Apply charge balance formula in
Therefore, the oxidation number of nitrogen in
Apply charge balance formula in
Therefore, the oxidation number of iron in
The element that gets oxidized reduces the other one and is known as reducing agent. The element that gets reduced oxidizes the other one and is known as oxidizing agent.
In the given reaction, the oxidation number of
In the given reaction, the oxidation number of
The oxidation number of
Want to see more full solutions like this?
Chapter 17 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
- 7. For the following structure: ← Draw structure as is - NO BI H H Fisher projections (a) Assign R/S configuration at all chiral centers (show all work). Label the chiral centers with an asterisk (*). (b) Draw an enantiomer and diastereomer of the above structure and assign R/S configuration at all chiral centers (again, show all work). (c) On the basis of the R/S system, justify your designation of the structures as being enantiomeric or diastereomeric to the original structure.arrow_forwardDon't used Ai solutionarrow_forward1. For the following reactions, predict the major product. Show stereochemistry where appropriate. неу b) 7 HBr XV ROOR H₂504 c) N/ H20 H+2 d) ~ Pt c) f. MCPBA -> сна сла (solvent) (1)BH 3-THE (3) Надрон B177 H20 9)arrow_forward
- For the following reactions, predict the major product. Show stereochemistry where approarrow_forwardHow is Talu home quer in Org. Chemistry propose a 3-butanal prepared from ketone? complete reaction for this, (to start from the guignand Meagent. ②what pocubble products could be produced from the reaction of : CA₂ CH₂ CH₂ dil H.504 A CH3 1 OBCH₂OH Naz Cr₂ 07 12504 NazCD 4 CH3CH2 07 AzS04 H3C H3C CH3-C - C - Atz но но + H, CH3 07 > ⑦Colts C614501 + (215) 504 кон 4arrow_forwardRank the following compounds most to least acidic: a) О OH 요애 OH .OH flow flow О F F F F OH F b) Ha EN-Ha CI Ha F F CI Haarrow_forward
- a) b) Provide arrows to show the mechanisms and then predict the products of the following acid base reaction. Use pKas to determine which way the reaction will favor (Hint: the lower pka acid will want to dissociate) Дон OH Ha OH NH2 c) H H-O-Harrow_forwardMATERIALS. Differentiate between interstitial position and reticular position.arrow_forwardFor each of the following, indicate whether the arrow pushes are valid. Do we break any rules via the arrows? If not, indicate what is incorrect. Hint: Draw the product of the arrow and see if you still have a valid structure. a. b. N OH C. H N + H d. e. f. مه N COHarrow_forward
- Decide which is the most acidic proton (H) in the following compounds. Which one can be removed most easily? a) Ha Нь b) Ha Нь c) CI CI Cl Ha Ньarrow_forwardProvide all of the possible resonanse structures for the following compounds. Indicate which is the major contributor when applicable. Show your arrow pushing. a) H+ O: b) c) : N :O : : 0 d) e) Оarrow_forwardDraw e arrows between the following resonance structures: a) b) : 0: :0: c) :0: N t : 0: بار Narrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning