(a)
Interpretation:
The overall balanced equation by adding half reactions for the given reaction has to be stated.
Concept Introduction:
(a)

Answer to Problem 15QRT
The overall equation is as follows.
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element in its native form is zero. So, the oxidation number of
In almost all compounds oxidation number of bromine is
Apply charge balance formula in
Therefore, the oxidation number of iron in
In the given reaction, the oxidation number of
The oxidation number of
The half reaction that represents oxidation is as follows.
The half reaction that represents reduction is as follows.
Multiply equation (2) and add to equation (1) as shown below.
The overall equation obtained is as follows.
(b)
Interpretation:
The overall balanced equation by adding half reactions for the given reaction has to be stated.
Concept Introduction:
Refer to part (a).
(b)

Answer to Problem 15QRT
The overall reaction is shown below.
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element in its native form is zero. So, the oxidation number of
In almost all compounds oxidation number of chlorine is
Apply charge balance formula in
Therefore, the oxidation number of aluminium in
In the given reaction, the oxidation number of
The oxidation number of
The half reaction that represents oxidation is as follows.
The half reaction that represents reduction is as follows.
Multiply equation (4) with three and add to equation (3) as shown below.
Multiply the above equation to get final reaction as follows.
Therefore, the overall reaction is shown below.
(c)
Interpretation:
The overall balanced equation by adding half reactions for the given reaction has to be stated.
Concept Introduction:
Refer to part (a).
(c)

Answer to Problem 15QRT
The overall reaction is shown below.
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element in its native form is zero. So, the oxidation number of
In almost all compounds oxidation number of iodine is
Apply charge balance formula in
Therefore, the oxidation number of sulfur in
Apply charge balance formula in
Therefore, the oxidation number of sulfur in
In the given reaction, the oxidation number of sulfur changes from
The oxidation number of
The half reaction that represents oxidation is as follows.
The half reaction that represents reduction is as follows.
The number of oxygen atoms is balanced by adding four molecules of water on product side as shown below.
In acidic medium, the number of hydrogen atoms is balanced by adding
The charge on reactant side is
The balanced half cell reaction represents reduction is shown below.
Multiply equation (5) with eight and add to equation (6) as shown below.
Therefore, the overall reaction is shown below.
(d)
Interpretation:
The overall balanced equation by adding half reactions for the given reaction has to be stated.
Concept Introduction:
Refer to part (a).
(d)

Answer to Problem 15QRT
The overall reaction is as follows.
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element carrying charge is equal to that charge. So, the oxidation number of
In almost all compounds oxidation number of hydrogen is
Apply charge balance formula in
Therefore, the oxidation number of oxygen in
Apply charge balance formula in
Therefore, the oxidation number of oxygen in
In the given reaction, the oxidation number of
The oxidation number of
The half reaction that represents oxidation is as follows.
The reaction for the conversion of
The number of oxygen atoms is balanced by adding one molecule of water on product side as shown below.
In acidic medium, the number of hydrogen atoms is balanced by adding
The charge on reactant side is
The balanced half cell reaction represents reduction is shown below.
Multiply equation (7) with two and add to equation (8) as shown below.
Therefore, the overall reaction is as follows.
(e)
Interpretation:
The overall balanced equation by adding half reactions for the given reaction has to be stated.
Concept Introduction:
Refer to part (a).
(e)

Answer to Problem 15QRT
The, the overall reaction is as follows.
Explanation of Solution
The given reaction is shown below.
The oxidation number of any element carrying charge is equal to that charge. So, the oxidation number of
In almost all compounds oxidation number of hydrogen is
Apply charge balance formula in
Therefore, the oxidation number of nitrogen in
Apply charge balance formula in
Therefore, the oxidation number of nitrogen in
Apply charge balance formula in
Therefore, the oxidation number of nitrogen in
Apply charge balance formula in
Therefore, the oxidation number of iron in
In the given reaction, the oxidation number of
In the given reaction, the oxidation number of
The oxidation number of
The reaction for the oxidation of
The number of oxygen atoms is balanced by adding four molecules of water on reactant side as shown below.
In acidic medium, the number of hydrogen atoms is balanced by adding
The charge on reactant side is zero and the charge on product side is
The half cell reaction for oxidation of
The reaction for the reduction of
The number of oxygen atoms is balanced by adding two molecules of water on product side as shown below.
In acidic medium, the number of hydrogen atoms is balanced by adding
The charge on reactant side is
The half cell reaction for reduction of
Multiply equation (10) with three and add to equation (10) as shown below.
Therefore, the overall reaction is as follows.
Want to see more full solutions like this?
Chapter 17 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
- € + Suppose the molecule in the drawing area below were reacted with H₂ over a platinum catalyst. Edit the molecule to show what would happen to it. That is, turn it into the product of the reaction. Also, write the name of the product molecule under the drawing area. Name: ☐ H C=0 X H- OH HO- H HO- -H CH₂OH ×arrow_forwardDraw the Haworth projection of the disaccharide made by joining D-glucose and D-mannose with a ẞ(1-4) glycosidic bond. If the disaccharide has more than one anomer, you can draw any of them. Click and drag to start drawing a structure. Xarrow_forwardEpoxides can be opened in aqueous acid or aqueous base to produce diols (molecules with two OH groups). In this question, you'll explore the mechanism of epoxide opening in aqueous acid. 2nd attempt Be sure to show all four bonds at stereocenters using hash and wedge lines. 0 0 Draw curved arrows to show how the epoxide reacts with hydronium ion. 100 +1: 1st attempt Feedback Be sure to show all four bonds at stereocenters using hash and wedge lines. See Periodic Table See Hint H A 5 F F Hr See Periodic Table See Hintarrow_forward
- 03 Question (1 point) For the reaction below, draw both of the major organic products. Be sure to consider stereochemistry. > 1. CH₂CH₂MgBr 2. H₂O 3rd attempt Draw all four bonds at chiral centers. Draw all stereoisomers formed. Draw the structures here. e 130 AN H See Periodic Table See Hint P C Brarrow_forwardYou may wish to address the following issues in your response if they are pertinent to the reaction(s) you propose to employ:1) Chemoselectivity (why this functional group and not another?) 2) Regioselectivity (why here and not there?) 3) Stereoselectivity (why this stereoisomer?) 4) Changes in oxidation state. Please make it in detail and draw it out too in what step what happens. Thank you for helping me!arrow_forward1) Chemoselectivity (why this functional group and not another?) 2) Regioselectivity (why here and not there?) 3) Stereoselectivity (why this stereoisomer?) 4) Changes in oxidation state. Everything in detail and draw out and write it.arrow_forward
- Calculating the pH at equivalence of a titration 3/5 Izabella A chemist titrates 120.0 mL of a 0.7191M dimethylamine ((CH3)2NH) solution with 0.5501 M HBr solution at 25 °C. Calculate the pH at equivalence. The pk of dimethylamine is 3.27. Round your answer to 2 decimal places. Note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of HBr solution added. pH = ☐ ✓ 18 Ar Boarrow_forwardAlcohols can be synthesized using an acid-catalyzed hydration of an alkene. An alkene is combined with aqueous acid (e.. sulfuric acid in water). The reaction mechanism typically involves a carbocation intermediate. > 3rd attempt 3343 10 8 Draw arrows to show the reaction between the alkene and hydronium ion. that 2nd attempt Feedback 1st attempt تعمال Ju See Periodic Table See Hint F D Ju See Periodic Table See Hintarrow_forwardDraw the simplified curved arrow mechanism for the reaction of acetone and CHgLi to give the major product. 4th attempt Π Draw the simplified curved arrow mechanism T 3rd attempt Feedback Ju See Periodic Table See Hint H -H H -I H F See Periodic Table See Hintarrow_forward
- Select the correct reagent to accomplish the first step of this reaction. Then draw a mechanism on the Grignard reagent using curved arrow notation to show how it is converted to the final product. 4th attempt Part 1 (0.5 point) Select the correct reagent to accomplish the first step of this reaction. Choose one: OA Mg in ethanol (EtOH) OB. 2 Li in THF O C. Li in THF D. Mg in THF O E Mg in H2O Part 2 (0.5 point) Br Part 1 Bri Mg CH B CH, 1 Draw intermediate here, but no arrows. © TE See Periodic Table See Hint See Hint ין Harrow_forwardSelect the product for the following reaction. HO HO PCC OH ○ OH O HO ○ HO HO HOarrow_forward5:45 Х Select the final product for the following reaction sequence. O O 1. Mg. ether 2.D.Oarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning




