Concept explainers
(a)
Interpretation:
The combustion reaction for one mole of octane has to be stated.
Concept Introduction:
The
(a)
Answer to Problem 17.ACP
The chemical equation for complete combustion reaction of octane is shown below.
Explanation of Solution
The main products produced by the complete combustion of octane are carbon dioxide and water. The chemical equation representing the combustion reaction of octane is shown below.
The chemical reaction shown above illustrates the burning of one mole of the octane in the presence of the oxygen to produce eight moles of carbon dioxide and nine moles of water.
(b)
Interpretation:
The chemical reaction for the hydrogenation process has to be stated. Also the amount of hydrogen gas produced by the combustion of one mole of octane has to be determined.
Concept Introduction:
The chemical reaction which takes place between molecular hydrogen and another compound, in the presence of a catalyst such as nickel, palladium or platinum is termed as hydrogenation reaction. This process is commonly used to reduce the unsaturated compounds.
(b)
Answer to Problem 17.ACP
The chemical equation which represents the first step is shown below.
The chemical equation which represents the second step is shown below.
Seventeen moles of
Explanation of Solution
The steps which include the hydrogenation process are shown below.
The first step is the partial oxidation of the octane which leads to the formation of carbon monoxide and hydrogen.
The chemical equation which represents the first step is shown below.
The second step leads to the production of carbon dioxide and hydrogen gas when carbon monoxide combines with water. The mixture of gas obtained by the combination of carbon dioxide and hydrogen gas is referred to as the shift gas.
The chemical equation which represents the second step is shown below.
Hence the overall reaction will get on addition of chemical equation for first and second step which is shown below.
Thus, the overall reaction so obtained is shown below.
According to the above chemical equation, seventeen moles of
(c)
Interpretation:
The chemical equations are to be combined and have to be shown that the overall reaction is same as that of the combustion of octane.
Concept Introduction:
The zero-emission fuel burned with oxygen is referred to as hydrogen fuel. There are many applications of it as it is used in fuel cells or internal combustion engines. The hydrogen reacts with oxygen and leads to the formation of water and also releases energy as the by product.
(c)
Answer to Problem 17.ACP
The result is same as that for the combustion reaction of octane.
Explanation of Solution
The chemical equation representing the reaction takes place for the hydrogen gas as a fuel is shown below.
The overall chemical equation so obtained in part (b) is shown below.
The chemical equation for the combustion reaction of octane is obtained by addition of reactions mentioned above. Thus, the result obtained is shown below.
Hence, the result so obtained by the addition of above two reactions is the same as the combustion reaction of octane.
(d)
Interpretation:
The Gibbs energy produced in thehydrogen fuel gas reaction and that of the combustion of the octane has to be compared.
Concept Introduction:
The general expression for the calculation of Gibbs free energy for a reaction is shown below.
(d)
Answer to Problem 17.ACP
The Gibbs energy produced in thehydrogen fuel gas reaction is less negative and has smaller magnitude as compared to the combustion of the octane.
Explanation of Solution
The chemical equation representing the combustion reaction of octane is shown below.
The elements which are present in their elemental states have
The standard Gibbs free energy for the formation of water,
The expression for the calculation of Gibbs free energy for the combustion reaction of octane is shown below.
The value of
The value of
The value of
The value of
Substitute the value of
Thus, the energy produced during the combustion of one mole of octane is
The chemical equation for the hydrogen gas shift reaction is shown below.
The elements which are present in their elemental states have
The standard Gibbs free energy for the formation of water,
The expression for the calculation of Gibbs free energy for the hydrogen gas shift reaction is shown below.
The value of
The value of
The value of
Substitute the value of
Thus, the energy produced during the hydrogen gas shift reaction is
Therefore, the amount of the Gibbs energy produced in the hydrogen fuel gas reaction is less negative and has smaller magnitude as compared to that of the combustion of the octane.
Want to see more full solutions like this?
Chapter 17 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
- (a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forward10:16 ☑ Vo)) Vo) 4G LTE 76% Complete the following reaction by identifying the principle organic product of the reaction. HO OH ↑ CH2N2 OH ? ○ A. 01 N₂H2C OH ОН B. HO OCH3 OH ○ C. HO OH ŎCH₂N2 ○ D. H3CO OH он Quiz navigation 1 2 3 4 5 11 12 Next page 10 6 7 8 9 10arrow_forwardWhich one of the following statements explain why protecting groups are referred to as “a necessary evil in organic synthesis”? Question 12Select one or more: A. They increase the length and cost of the synthesis B. Every synthesis employs protecting groups C. Protecting group have no role to play in a synthesis D. They minimize the formation of side productsarrow_forward
- Which of the following attributes is a key advantage of the chiral auxiliary approach over the chiral pool approach in asymmetric synthesis? Question 10Select one: A. Chiral auxiliaries are cheaper than chiral pool substrates B. Chiral auxiliary can be recovered and recycled unlike chiral pool substrates. C. The use of chiral auxiliaries provide enantiopure products, while chiral pool reactions are only enantioselective D. The chiral auxiliaries are naturally occurring and do not require synthesisarrow_forwardIn the following molecule, indicate the hybridization and shape of the indicated atoms. CH3 CH3 H3C HO: CI:arrow_forwardWhich of the following are TRUE about linear syntheses? Question 7Select one: A. They are easier to execute B. They are the most efficient strategy for all syntheses C. They are generally shorter than convergent syntheses D. They are less versatile compared to convergent synthesesarrow_forward
- Which of the following characteristics is common among chiral pool substrates? Question 4Select one: A. They have good leaving groups B. They are all achiral C. All have a multiplicity of chiral centres D. They have poor leaving groupsarrow_forwardDetermine whether the following reaction is an example of a nucleophilic substitution reaction: H NO2 H+ NO 2 + Molecule A Molecule B Is this a nucleophilic substitution reaction? If this is a nucleophilic substitution reaction, answer the remaining questions in this table. What word or two-word phrase is used to describe the role Molecule A plays in this reaction? What word or two-word phrase is used to describe the role Molecule B plays in this reaction? Use a 6 + symbol to label the electrophilic carbon that is attacked during the substitution. Highlight the leaving group on the appropriate reactant. O Yes ○ No ☐ 0 dx 000 HE ?arrow_forwardDraw the major organic product of the Bronsted acid-base reaction. Include all lone pairs and charges as appropriate. Ignore any counterions. :0: NaOH Harrow_forward
- 5. Calculate the total amount of heat transferred as 50 g of wat Specific heat H₂O (g) 2.00 J/g°C -10 °C. Specific heat H₂O (1) Specific heat H₂O (s) 4.18 J/g°C 2.11 J/g°C Heat of vaporization 2260 J/g Heat of fusion 334 J/g Melting point 0°C 6. Calculate the total amount of heat transferred as 25 g of water is heated from 50 °C to 100 °C as a gas. Boiling point 100 °Carrow_forwardCalculate the total amount of heat transferred as 50 g of Water -10°C. Calculate the total amount of heat transferred as 25 g of water is heated from 50°C to 100°C as a gas. \table[[Specific heat H₂O(g), 2.00°C Η 2 g 5. Calculate the total amount of heat transferred as 50 g of wat Specific heat H₂O (g) 2.00 J/g°C -10 °C. 4.18 J/g°C 2.11 J/g°C 2260 J/g 334 J/g Specific heat H₂O (1) Specific heat H₂O (s) Heat of vaporization Heat of fusion Melting point 6. Calculate the total amount of heat transferred as 25 g of water is heated from 50 °C to 100 °C as a gas. Boiling point 100 °C 0°Carrow_forwardWrite formulas for ionic compounds composed of the following ions. Use units as a guide to your solutions. 24. sodium and nitrate 25. calcium and chlorate 26. aluminum and carbonate 27. CHALLENGE Write the formula for an ionic compound formed by ions from a group 2 element and polyatomic ions composed of only carbon and oxygen.show work step by steparrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning