Concept explainers
(a)
Interpretation:
The combustion reaction for one mole of octane has to be stated.
Concept Introduction:
The
(a)
Answer to Problem 17.ACP
The chemical equation for complete combustion reaction of octane is shown below.
Explanation of Solution
The main products produced by the complete combustion of octane are carbon dioxide and water. The chemical equation representing the combustion reaction of octane is shown below.
The chemical reaction shown above illustrates the burning of one mole of the octane in the presence of the oxygen to produce eight moles of carbon dioxide and nine moles of water.
(b)
Interpretation:
The chemical reaction for the hydrogenation process has to be stated. Also the amount of hydrogen gas produced by the combustion of one mole of octane has to be determined.
Concept Introduction:
The chemical reaction which takes place between molecular hydrogen and another compound, in the presence of a catalyst such as nickel, palladium or platinum is termed as hydrogenation reaction. This process is commonly used to reduce the unsaturated compounds.
(b)
Answer to Problem 17.ACP
The chemical equation which represents the first step is shown below.
The chemical equation which represents the second step is shown below.
Seventeen moles of
Explanation of Solution
The steps which include the hydrogenation process are shown below.
The first step is the partial oxidation of the octane which leads to the formation of carbon monoxide and hydrogen.
The chemical equation which represents the first step is shown below.
The second step leads to the production of carbon dioxide and hydrogen gas when carbon monoxide combines with water. The mixture of gas obtained by the combination of carbon dioxide and hydrogen gas is referred to as the shift gas.
The chemical equation which represents the second step is shown below.
Hence the overall reaction will get on addition of chemical equation for first and second step which is shown below.
Thus, the overall reaction so obtained is shown below.
According to the above chemical equation, seventeen moles of
(c)
Interpretation:
The chemical equations are to be combined and have to be shown that the overall reaction is same as that of the combustion of octane.
Concept Introduction:
The zero-emission fuel burned with oxygen is referred to as hydrogen fuel. There are many applications of it as it is used in fuel cells or internal combustion engines. The hydrogen reacts with oxygen and leads to the formation of water and also releases energy as the by product.
(c)
Answer to Problem 17.ACP
The result is same as that for the combustion reaction of octane.
Explanation of Solution
The chemical equation representing the reaction takes place for the hydrogen gas as a fuel is shown below.
The overall chemical equation so obtained in part (b) is shown below.
The chemical equation for the combustion reaction of octane is obtained by addition of reactions mentioned above. Thus, the result obtained is shown below.
Hence, the result so obtained by the addition of above two reactions is the same as the combustion reaction of octane.
(d)
Interpretation:
The Gibbs energy produced in thehydrogen fuel gas reaction and that of the combustion of the octane has to be compared.
Concept Introduction:
The general expression for the calculation of Gibbs free energy for a reaction is shown below.
(d)
Answer to Problem 17.ACP
The Gibbs energy produced in thehydrogen fuel gas reaction is less negative and has smaller magnitude as compared to the combustion of the octane.
Explanation of Solution
The chemical equation representing the combustion reaction of octane is shown below.
The elements which are present in their elemental states have
The standard Gibbs free energy for the formation of water,
The expression for the calculation of Gibbs free energy for the combustion reaction of octane is shown below.
The value of
The value of
The value of
The value of
Substitute the value of
Thus, the energy produced during the combustion of one mole of octane is
The chemical equation for the hydrogen gas shift reaction is shown below.
The elements which are present in their elemental states have
The standard Gibbs free energy for the formation of water,
The expression for the calculation of Gibbs free energy for the hydrogen gas shift reaction is shown below.
The value of
The value of
The value of
Substitute the value of
Thus, the energy produced during the hydrogen gas shift reaction is
Therefore, the amount of the Gibbs energy produced in the hydrogen fuel gas reaction is less negative and has smaller magnitude as compared to that of the combustion of the octane.
Want to see more full solutions like this?
Chapter 17 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
- Show work with explanation needed. Don't give Ai generated solutionarrow_forward7. Calculate the following for a 1.50 M Ca(OH)2 solution. a. The concentration of hydroxide, [OH-] b. The concentration of hydronium, [H3O+] c. The pOH d. The pHarrow_forwardA first order reaction is 46.0% complete at the end of 59.0 minutes. What is the value of k? What is the half-life for this reaction? HOW DO WE GET THERE? The integrated rate law will be used to determine the value of k. In [A] [A]。 = = -kt What is the value of [A] [A]。 when the reaction is 46.0% complete?arrow_forward
- 3. Provide the missing compounds or reagents. 1. H,NNH КОН 4 EN MN. 1. HBUCK = 8 хно Panely prowseful kanti-chuprccant fad, winddively, can lead to the crading of deduc din-willed, tica, The that chemooices in redimi Грин. " like (for alongan Ridovi MN نيا . 2. Cl -BuO 1. NUH 2.A A -BuOK THE CF,00,H Ex 5)arrow_forward2. Write a complete mechanism for the reaction shown below. NaOCH LOCH₁ O₂N NO2 CH₂OH, 20 °C O₂N NO2arrow_forward4. Propose a synthesis of the target molecules from the respective starting materials. a) b) LUCH C Br OHarrow_forward
- The following mechanism for the gas phase reaction of H2 and ICI that is consistent with the observed rate law is: step 1 step 2 slow: H2(g) +ICI(g) → HCl(g) + HI(g) fast: ICI(g) + HI(g) → HCl(g) + |2(g) (1) What is the equation for the overall reaction? Use the smallest integer coefficients possible. If a box is not needed, leave it blank. + → + (2) Which species acts as a catalyst? Enter formula. If none, leave box blank: (3) Which species acts as a reaction intermediate? Enter formula. If none, leave box blank: (4) Complete the rate law for the overall reaction that is consistent with this mechanism. (Use the form k[A][B]"..., where '1' is understood (so don't write it) for m, n etc.) Rate =arrow_forwardPlease correct answer and don't use hand rating and don't use Ai solutionarrow_forward1. For each of the following statements, indicate whether they are true of false. ⚫ the terms primary, secondary and tertiary have different meanings when applied to amines than they do when applied to alcohols. • a tertiary amine is one that is bonded to a tertiary carbon atom (one with three C atoms bonded to it). • simple five-membered heteroaromatic compounds (e.g. pyrrole) are typically more electron rich than benzene. ⚫ simple six-membered heteroaromatic compounds (e.g. pyridine) are typically more electron rich than benzene. • pyrrole is very weakly basic because protonation anywhere on the ring disrupts the aromaticity. • thiophene is more reactive than benzene toward electrophilic aromatic substitution. • pyridine is more reactive than nitrobenzene toward electrophilic aromatic substitution. • the lone pair on the nitrogen atom of pyridine is part of the pi system.arrow_forward
- The following reactions are NOT ordered in the way in which they occur. Reaction 1 PhO-OPh Reaction 2 Ph-O -CH₂ heat 2 *OPh Pho -CH2 Reaction 3 Ph-O ⚫OPh + -CH₂ Reaction 4 Pho Pho + H₂C OPh + CHOPh H₂C -CH₂ Reactions 1 and 3 Reaction 2 O Reaction 3 ○ Reactions 3 and 4 ○ Reactions 1 and 2 Reaction 4 ○ Reaction 1arrow_forwardSelect all possible products from the following reaction: NaOH H₂O a) b) ОН HO O HO HO e) ОН f) O HO g) h) + OHarrow_forward3. Draw diagrams to represent the conjugation in these molecules. Draw two types of diagram: a. Show curly arrows linking at least two different ways of representing the molecule b. Indicate with dotted lines and partial charges (where necessary) the partial double bond (and charge) distribution H₂N* H₂N -NH2arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning