(a)
Interpretation:
The given
Concept Introduction:
The
(a)

Answer to Problem 17QRT
The
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The iron atom and oxygen atom are balanced by putting
The above balanced reaction is multiplied by
Thus, the balanced chemical reaction is shown below.
The oxidation number of iron atom in
The oxidation number of oxygen atom in
(b)
Interpretation:
The given redox reaction is to be balanced and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(b)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The phosphorous atoms and bromine atoms are balanced by putting
The above balanced reaction is multiplied by
Thus, the balanced chemical reaction is shown below.
The oxidation number of phosphorous atom in
The oxidation number of bromine atom in
(c)
Interpretation:
The given redox reaction is to be balanced in acidic medium and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(c)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The oxidation number of cobalt atom in
The oxidation number of oxygen atom in
Therefore, the unbalanced half reactions are shown below.
Oxidation:
Reduction:
The given reaction is to be balanced in acidic medium. Therefore, oxygen atoms are balanced by adding water molecules to the deficient side.
Oxidation:
Reduction:
After balancing oxygen atoms, now hydrogen atoms are balanced by adding protons
Oxidation:
Reduction:
The charge is on both sides is balanced by adding electrons to the more positive side of the half- reaction to equal the less positive side of the half- reaction.
Oxidation:
Reduction:
Since, to make the equal loss and gain of electron, the oxidation reaction is multiplied by two. Therefore, the overall cell reaction is obtained by addition the above two half-cell reactions.
The simplified chemical equation after removing the chemical species of the similar kind is shown below.
Thus, the balanced chemical reaction is shown below.
(d)
Interpretation:
The given redox reaction is to be balanced in acidic medium and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(d)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The oxidation number of chlorine atom in
The oxidation number of manganese atom in
Therefore, the unbalanced half reactions are shown below.
Oxidation:
Reduction:
The given reaction is to be balanced in acidic medium. Therefore, oxygen atoms are balanced by adding water molecules to the deficient side.
Oxidation:
Reduction:
After balancing oxygen atoms, now hydrogen atoms are balanced by adding protons
Oxidation:
Reduction:
The charge is on both sides is balanced by adding electrons to the more positive side of the half- reaction to equal the less positive side of the half- reaction.
Oxidation:
Reduction:
Since the electron gain is not equivalent to electron lost. Thus, multiply the oxidation half reaction by
Oxidation:
Reduction:
Now, there is the equal loss and gain of electron in the above two half-cell reactions. Therefore, the overall cell reaction is get by addition the above two half-cell reactions.
The simplified chemical equation after removing the chemical species of the similar kind is shown below.
Thus, the balanced chemical reaction is shown below.
(e)
Interpretation:
The given redox reaction is to be balanced and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(e)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The oxidation number of zinc atom in
The oxidation number of manganese atom in
Therefore, the unbalanced half reactions are shown below.
Oxidation:
Reduction:
The given reaction is to be balanced in basic medium. Therefore, oxygen atoms are balanced by adding water molecules to the deficient side.
Oxidation:
Reduction:
After balancing oxygen atoms, hydrogen atoms are balanced by adding water molecules
Oxidation:
Reduction:
The charge is on both sides is balanced by adding electrons to the more positive side of the half- reaction to equal the less positive side of the half- reaction.
Oxidation:
Reduction:
Since the electron gain is not equivalent to electron lost. Thus, multiply the oxidation half reaction by
Oxidation:
Reduction:
Now, there is the equal loss and gain of electron in the above two half-cell reactions. Therefore, the overall cell reaction is get by addition the above two half-cell reactions.
The simplified chemical equation after removing the chemical species of the similar kind is shown below.
Thus, the balanced chemical reaction is shown below.
(f)
Interpretation:
The given redox reaction is to be balanced and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(f)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given redox reaction is shown below.
The given redox reaction is already balanced and there are equal numbers of each atom both the sides.
The oxidation number of nitrogen atom in
The oxidation number of oxygen atom in
(g)
Interpretation:
The given redox reaction is to be balanced in basic medium and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(g)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The phosphorous atoms and bromine atoms are balanced by putting
Thus, the balanced chemical reaction is shown below.
The oxidation number of carbon atom in
The oxidation number of oxygen atom in
Want to see more full solutions like this?
Chapter 17 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
- Using reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NO2 (g) = N2O4(g) AGº = -5.4 kJ Now suppose a reaction vessel is filled with 4.53 atm of dinitrogen tetroxide (N2O4) at 279. °C. Answer the following questions about this system: Under these conditions, will the pressure of N2O4 tend to rise or fall? Is it possible to reverse this tendency by adding NO2? In other words, if you said the pressure of N2O4 will tend to rise, can that be changed to a tendency to fall by adding NO2? Similarly, if you said the pressure of N2O4 will tend to fall, can that be changed to a tendency to '2' rise by adding NO2? If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO 2 needed to reverse it. Round your answer to 2 significant digits. 00 rise ☐ x10 fall yes no ☐ atm G Ar 1arrow_forwardWhy do we analyse salt?arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. H H CH3OH, H+ H Select to Add Arrows H° 0:0 'H + Q HH ■ Select to Add Arrows CH3OH, H* H. H CH3OH, H+ HH ■ Select to Add Arrows i Please select a drawing or reagent from the question areaarrow_forward
- What are examples of analytical methods that can be used to analyse salt in tomato sauce?arrow_forwardA common alkene starting material is shown below. Predict the major product for each reaction. Use a dash or wedge bond to indicate the relative stereochemistry of substituents on asymmetric centers, where applicable. Ignore any inorganic byproducts H Šali OH H OH Select to Edit Select to Draw 1. BH3-THF 1. Hg(OAc)2, H2O =U= 2. H2O2, NaOH 2. NaBH4, NaOH + Please select a drawing or reagent from the question areaarrow_forwardWhat is the MOHR titration & AOAC method? What is it and how does it work? How can it be used to quantify salt in a sample?arrow_forward
- Predict the major products of this reaction. Cl₂ hv ? Draw only the major product or products in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If there will be no products because there will be no significant reaction, just check the box under the drawing area and leave it blank. Note for advanced students: you can ignore any products of repeated addition. Explanation Check Click and drag to start drawing a structure. 80 10 m 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility DII A F1 F2 F3 F4 F5 F6 F7 F8 EO F11arrow_forwardGiven a system with an anodic overpotential, the variation of η as a function of current density- at low fields is linear.- at higher fields, it follows Tafel's law.Calculate the range of current densities for which the overpotential has the same value when calculated for both cases (the maximum relative difference will be 5%, compared to the behavior for higher fields).arrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: N2 (g) + 3H2 (g) = 2NH3 (g) AGº = -34. KJ Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2 tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N2 will tend to rise, can that be changed to a tendency to fall by adding H2? Similarly, if you said the pressure of N will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no ☐ atm Х ด ? olo 18 Ararrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





