(a)
Interpretation:
The given
Concept Introduction:
The
(a)

Answer to Problem 17QRT
The
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The iron atom and oxygen atom are balanced by putting
The above balanced reaction is multiplied by
Thus, the balanced chemical reaction is shown below.
The oxidation number of iron atom in
The oxidation number of oxygen atom in
(b)
Interpretation:
The given redox reaction is to be balanced and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(b)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The phosphorous atoms and bromine atoms are balanced by putting
The above balanced reaction is multiplied by
Thus, the balanced chemical reaction is shown below.
The oxidation number of phosphorous atom in
The oxidation number of bromine atom in
(c)
Interpretation:
The given redox reaction is to be balanced in acidic medium and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(c)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The oxidation number of cobalt atom in
The oxidation number of oxygen atom in
Therefore, the unbalanced half reactions are shown below.
Oxidation:
Reduction:
The given reaction is to be balanced in acidic medium. Therefore, oxygen atoms are balanced by adding water molecules to the deficient side.
Oxidation:
Reduction:
After balancing oxygen atoms, now hydrogen atoms are balanced by adding protons
Oxidation:
Reduction:
The charge is on both sides is balanced by adding electrons to the more positive side of the half- reaction to equal the less positive side of the half- reaction.
Oxidation:
Reduction:
Since, to make the equal loss and gain of electron, the oxidation reaction is multiplied by two. Therefore, the overall cell reaction is obtained by addition the above two half-cell reactions.
The simplified chemical equation after removing the chemical species of the similar kind is shown below.
Thus, the balanced chemical reaction is shown below.
(d)
Interpretation:
The given redox reaction is to be balanced in acidic medium and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(d)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The oxidation number of chlorine atom in
The oxidation number of manganese atom in
Therefore, the unbalanced half reactions are shown below.
Oxidation:
Reduction:
The given reaction is to be balanced in acidic medium. Therefore, oxygen atoms are balanced by adding water molecules to the deficient side.
Oxidation:
Reduction:
After balancing oxygen atoms, now hydrogen atoms are balanced by adding protons
Oxidation:
Reduction:
The charge is on both sides is balanced by adding electrons to the more positive side of the half- reaction to equal the less positive side of the half- reaction.
Oxidation:
Reduction:
Since the electron gain is not equivalent to electron lost. Thus, multiply the oxidation half reaction by
Oxidation:
Reduction:
Now, there is the equal loss and gain of electron in the above two half-cell reactions. Therefore, the overall cell reaction is get by addition the above two half-cell reactions.
The simplified chemical equation after removing the chemical species of the similar kind is shown below.
Thus, the balanced chemical reaction is shown below.
(e)
Interpretation:
The given redox reaction is to be balanced and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(e)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The oxidation number of zinc atom in
The oxidation number of manganese atom in
Therefore, the unbalanced half reactions are shown below.
Oxidation:
Reduction:
The given reaction is to be balanced in basic medium. Therefore, oxygen atoms are balanced by adding water molecules to the deficient side.
Oxidation:
Reduction:
After balancing oxygen atoms, hydrogen atoms are balanced by adding water molecules
Oxidation:
Reduction:
The charge is on both sides is balanced by adding electrons to the more positive side of the half- reaction to equal the less positive side of the half- reaction.
Oxidation:
Reduction:
Since the electron gain is not equivalent to electron lost. Thus, multiply the oxidation half reaction by
Oxidation:
Reduction:
Now, there is the equal loss and gain of electron in the above two half-cell reactions. Therefore, the overall cell reaction is get by addition the above two half-cell reactions.
The simplified chemical equation after removing the chemical species of the similar kind is shown below.
Thus, the balanced chemical reaction is shown below.
(f)
Interpretation:
The given redox reaction is to be balanced and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(f)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given redox reaction is shown below.
The given redox reaction is already balanced and there are equal numbers of each atom both the sides.
The oxidation number of nitrogen atom in
The oxidation number of oxygen atom in
(g)
Interpretation:
The given redox reaction is to be balanced in basic medium and the oxidizing agent and reducing agent are to be identified.
Concept Introduction:
Same as part (a).
(g)

Answer to Problem 17QRT
The balanced redox reaction is shown below.
In this reaction,
Explanation of Solution
The given unbalanced redox reaction is shown below.
The phosphorous atoms and bromine atoms are balanced by putting
Thus, the balanced chemical reaction is shown below.
The oxidation number of carbon atom in
The oxidation number of oxygen atom in
Want to see more full solutions like this?
Chapter 17 Solutions
OWLv2 for Moore/Stanitski's Chemistry: The Molecular Science, 5th Edition, [Instant Access], 1 term (6 months)
- Pls help.arrow_forwardPls help.arrow_forward16) A 2.0 L flask containing 2.0 x 10-3 mol H2(g), 3.0 x 10-3 mol Cl2(g), and 4.0 x 10-3 mol HCl(g) at equilibrium. This system is represented by the following chemical equation: H2 (g) + Cl2 (g) → 2HCl(g) Calculate the equilibrium constant for this reaction.arrow_forward
- 7) The pH of a 0.05M solution of HCl(aq) at 25°C is a. 1.3 b. 2.3 c. 3.3 d. 12.7arrow_forward11) The Ksp expression for copper (II) sulfate is: a. [Cu2+][SO4²¯] b. [Cu²+]² [SO4²]² c. [Cu²+]²[SO4²] d. [CuSO4] 12) Which of the following is true about a chemical system in equilibrium? a. All chemical reactions have stopped b. The concentration of reactants is equal to the concertation of products c. The forward and reverse reaction rates become equal d. The system will remain at equilibrium regardless of any external factorsarrow_forward21) Explain the difference between the rate of a reaction and the extent of a reaction. Why are both of these concepts important, if you are a chemical engineer that is trying to develop a process to produce a large volume of a specific type of chemical compound?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





