Concept explainers
(a)
Whether the wave move toward right or the left.
(a)
Answer to Problem 58AP
The wave does not move toward right or the left while the wave moves outward equally in all directions.
Explanation of Solution
Given info:
The given wave function is,
The standard form wave function for the standing wave is,
Here,
If
The wave moves outward equally in all directions because of the negative sign in
Conclusion:
Therefore, the wave does not move toward right or the left while the wave moves outward equally in all directions
(b)
The effect on its amplitude as it moves away from the source.
(b)
Answer to Problem 58AP
The amplitude of the wave will be decreased as it moves away from the source because amplitude is inversely proportional to the distance.
Explanation of Solution
Given info:
From equation (1), the given wave function is,
From equation (2), the standard form wave function for the standing wave is,
From equation (1) and (2), it is clear that the amplitude is inversely proportional to its distance from the center. The amplitude of the wave will be decreased as it moves away from the source because amplitude is inversely proportional to the distance.
Conclusion:
Therefore, the amplitude of the wave will be decreased as it moves away from the source because amplitude is inversely proportional to the distance
(c)
The effect on its speed as it moves away from the source.
(c)
Answer to Problem 58AP
The speed of the wave is constant as it moves away from the source.
Explanation of Solution
Given info:
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the speed of the wave is,
Here,
Substitute
The calculated value of the speed of the wave is equal to the speed of the wave in the water at
Conclusion:
Therefore, the speed of the wave is constant as it moves away from the source.
(d)
The effect on its frequency as it moves away from the source.
(d)
Answer to Problem 58AP
The frequency of the wave is constant as wave moves away from the source.
Explanation of Solution
Given info:
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the frequency of the wave is,
Here,
Substitute
The frequency of the wave is constant at
Conclusion:
Therefore, the frequency of the wave is constant as the wave moves away from the source.
(e)
The effect on its wavelength as it moves away from the source.
(e)
Answer to Problem 58AP
The wavelength of the wave is constant as wave moves away from the source.
Explanation of Solution
Given info:
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the wavelength of the wave is,
Here,
Substitute d
The wavelength of the wave is constant at
Conclusion:
Therefore, the wavelength of the wave is constant as the wave moves away from the source.
(f)
The effect of its power as it moves away from the source.
(f)
Answer to Problem 58AP
The power of the source and the net power of the wave at all distance as wave moves away from the source.
Explanation of Solution
Given info:
The given wave function is,
The standard form wave function for the standing wave is,
Formula to calculate the intensity of the wave is,
Here,
Substitute d
Formula to calculate the power of the source and the net power of the wave at all distance is,
Here,
Substitute
Thus, the power of the source and the net power of the wave at all distance will be same because the wave moves outward equally in all directions
Conclusion:
Therefore, the power of the source and the net power of the wave at all distance as the wave moves away from the source.
(e)
The effect of its intensity as it moves away from the source.
(e)
Answer to Problem 58AP
The intensity of the source and the intensity of the wave at all distance as wave moves away from the source.
Explanation of Solution
Given info:
The given wave function is,
The standard form wave function for the standing wave is,
The intensity of the wave is,
The intensity of the wave follows the inverse square law at
Substitute
Thus, the intensity of the source and the intensity of the wave are same as the wave moves away from the source because the wave moves outward equally in all directions.
Conclusion:
Therefore, the intensity of the source and the intensity of the wave are same as the wave moves away from the source.
Want to see more full solutions like this?
Chapter 17 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- No chatgpt plsarrow_forwardhelp me with the experimental set up for the excel i did. the grapharrow_forwardWhich of the following best describes how to calculate the average acceleration of any object? Average acceleration is always halfway between the initial acceleration of an object and its final acceleration. Average acceleration is always equal to the change in velocity of an object divided by the time interval. Average acceleration is always equal to the displacement of an object divided by the time interval. Average acceleration is always equal to the change in speed of an object divided by the time interval.arrow_forward
- The figure shows the velocity versus time graph for a car driving on a straight road. Which of the following best describes the acceleration of the car? v (m/s) t(s) The acceleration of the car is negative and decreasing. The acceleration of the car is constant. The acceleration of the car is positive and increasing. The acceleration of the car is positive and decreasing. The acceleration of the car is negative and increasing.arrow_forwardWhich figure could represent the velocity versus time graph of a motorcycle whose speed is increasing? v (m/s) v (m/s) t(s) t(s)arrow_forwardUnlike speed, velocity is a the statement? Poisition. Direction. Vector. Scalar. quantity. Which one of the following completesarrow_forward
- No chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward3.63 • Leaping the River II. A physics professor did daredevil stunts in his spare time. His last stunt was an attempt to jump across a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower than the top of the ramp. The river itself was 100 m below the ramp. Ignore air resistance. (a) What should his speed have been at the top of the ramp to have just made it to the edge of the far bank? (b) If his speed was only half the value found in part (a), where did he land? Figure P3.63 53.0° 100 m 40.0 m→ 15.0 marrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning