
Concept explainers
(a)
The wavelength of the initial note.
(a)

Answer to Problem 29P
The wavelength of the initial note is
Explanation of Solution
Write the expression for wavelength.
Here,
Conclusion:
Substitute,
Therefore, the wavelength of the initial note is
(b)
The wavelength of the final note.
(b)

Answer to Problem 29P
The wavelength of the final note is
Explanation of Solution
Use equation (I) to obtain the wavelength of the final high note.
Conclusion:
Substitute,
Therefore, the wavelength of the final note is
(c)
The pressure amplitude of the initial note.
(c)

Answer to Problem 29P
The pressure amplitude of the initial note is
Explanation of Solution
Write the expression for the intensity of the wave.
Here,
Rewrite the equation (II) to obtain an expression for
Write the expression for sound level.
Here,
Conclusion:
Substitute,
Substitute,
Therefore, the pressure amplitude of the initial note is
(d)
The pressure amplitude of the final note.
(d)

Answer to Problem 29P
The pressure amplitude of the final note is
Explanation of Solution
The pressure amplitude is depends on the intensity, density, and speed, since all these quantities are same in case of initial and final note, the pressure amplitude of initial and final note are same.
Conclusion:
Substitute,
Substitute,
Therefore, the pressure amplitude of the final note is
(e)
The displacement amplitude of the initial note.
(e)

Answer to Problem 29P
The displacement amplitude of the initial note is
Explanation of Solution
Write the expression for the intensity in terms of displacement amplitude.
Here,
Substitute,
Conclusion:
Substitute,
Therefore, displacement amplitude of the initial note is
(f)
The displacement amplitude of the final note.
(f)

Answer to Problem 29P
The displacement amplitude of the final note is
Explanation of Solution
Use equation (VI) to obtain the value of the displacement amplitude of the final note.
Conclusion:
Substitute,
Therefore, displacement amplitude of the final note is
Want to see more full solutions like this?
Chapter 17 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- Need help wity equilibrium qestionarrow_forwardneed answer asap please thanks youarrow_forwardA man slides two boxes up a slope. The two boxes A and B have a mass of 75 kg and 50 kg, respectively. (a) Draw the free body diagram (FBD) of the two crates. (b) Determine the tension in the cable that the man must exert to cause imminent movement from rest of the two boxes. Static friction coefficient USA = 0.25 HSB = 0.35 Kinetic friction coefficient HkA = 0.20 HkB = 0.25 M₁ = 75 kg MB = 50 kg P 35° Figure 3 B 200arrow_forward
- A golf ball is struck with a velocity of 20 m/s at point A as shown below (Figure 4). (a) Determine the distance "d" and the time of flight from A to B; (b) Determine the magnitude and the direction of the speed at which the ball strikes the ground at B. 10° V₁ = 20m/s 35º Figure 4 d Barrow_forwardThe rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forwardA particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be (F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the y and z component of the velocity of the particle.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





