For a solution that e 0.275M
(a)
Interpretation:
A solution consists propionic acid,
Concept introduction:
The concentration of any solution is calculated by the molarity of the solution. It is defined as the number of moles of solute in 1 L of the solution.
Here, n is number of moles of solute and V is volume of solution in L.
The dissociation constant of the weak acid is calculated by the following formula-
The expression can be written as follows:
Answer to Problem 1E
The concentration of
Explanation of Solution
The complete dissociation of strong acid occurs in the solution, whereas weak acid is not able to dissociate completely.
From the given information,
Propionic acid,
The molarity of propionic acid
Hydroiodic acid, HI = strong acid
The molarity of [HI] or [H3O+] ion = 0.0892 M
The chemical equation of this reaction is given below:
Now, the concentration will be calculated by using the following ICE table:
Initial (I) | 0.275 | - | 0 | 0.0892 |
Change (C) | - x | - | + x | + x |
Equilibrium (E) | 0.275- x | - | x | 0.0892+ x |
Given that-
Ka = 1.3×10-5
The equation for the Ka is as follows:
Put the given values in equation (1).
On calculation −
Now, the concentration of
(b)
Interpretation:
A solution consists propionic acid,
Concept introduction:
The concentration of any solution is calculated by the molarity of the solution. It is defined as the number of moles of solute in 1 L of the solution.
Here, n is number of moles of solute and V is volume of solution in L.
The dissociation constant of the weak acid is calculated by the following formula:
The expression can be written as follows:
The relation between the dissociation constant of acid and the base is given by the following equation-
Here,
Answer to Problem 1E
The concentration of
Explanation of Solution
The chemical equation of this reaction is given below:
The concentration of
Given that-
And,
Put the above values in equation (1)
(c)
Interpretation:
A solution consists propionic acid,
Concept introduction:
The concentration of any solution is calculated by the molarity of the solution. It is defined as the number of moles of solute in 1 L of the solution.
Here, n is number of moles of solute and V is volume of solution in L.
The dissociation constant of the weak acid is calculated by the following formula:
The expression can be written as follows:
Answer to Problem 1E
The concentration of
Explanation of Solution
The chemical equation of this reaction is given below:
Now, the concentration will be calculated by using the following ICE table:
Initial (I) | 0.275 | - | 0 | 0.0892 |
Change (C) | -x | - | +x | +x |
Equilibrium (E) | 0.275-x | - | x | 0.0892+x |
From the ICE table:
Ka = 1.3×10-5
The equation for the Ka is given as
Put the given values in equation (1).
On calculation −
Therefore,
(d)
Interpretation:
A solution consists propionic acid,
Concept introduction:
The dissociation constant of the weak acid is calculated by the following formula:
The expression can be written as follows:
The strong acid dissociates completely in comparison to the weak acid.
Answer to Problem 1E
The concentration of [HI] = 0.0892 M.
Explanation of Solution
The complete dissociation of strong acid occurs in the solution, whereas weak acid is not able to dissociate completely.
From the given question −
Hydroiodic acid, HI = strong acid
The molarity of [HI] or [H3O+] ion = 0.0892 M
As hydroiodic acid is strong acid it will dissociate completely in the solution. Hence, the initial concentration of [HI] = 0.0892 M.
Want to see more full solutions like this?
Chapter 17 Solutions
General Chemistry: Principles and Modern Applications (11th Edition)
Additional Science Textbook Solutions
Human Anatomy & Physiology (2nd Edition)
Campbell Biology (11th Edition)
Cosmic Perspective Fundamentals
Microbiology: An Introduction
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Anatomy & Physiology (6th Edition)
- ↑ 0 Quiz List - RCC430M_RU05 X Aktiv Learning App × Qdraw resonance structure ×Q draw resonance structure xb My Questions | bartleby ×+ https://app.aktiv.com Draw a resonance structure of pyrrole that has the same number of pi bonds as the original structure. Include all lone pairs in your structure. + N H a 5 19°F Cloudy Q Search Problem 12 of 15 Atoms, Bonds and Rings Charges and Lone Pairs myhp हजु Undo Reset Remove Done Submit Drag To Pan 2:15 PM 1/25/2025arrow_forwardDon't used hand raitingarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Indicate the coordination forms of Si in silicates.arrow_forwardBriefly indicate the structure and bonding of silicates.arrow_forward4 Part C Give the IUPAC name and a common name for the following ether: Spell out the full names of the compound in the indicated order separated by a comma.arrow_forward
- Try: Draw possible resonance contributing structures for the following organic species: CH3CH2NO2 [CH2CHCH2] [CH2CHCHO] [CH2CHCH2] [CH2CHNH2]arrow_forwardComplete the following synthesis. (d). H+ ง сarrow_forwardCan the target compound be efficiently synthesized in good yield from the substituted benzene of the starting material? If yes, draw the synthesis. Include all steps and all reactants.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning