
General Chemistry: Principles and Modern Applications (11th Edition)
11th Edition
ISBN: 9780132931281
Author: Ralph H. Petrucci, F. Geoffrey Herring, Jeffry D. Madura, Carey Bissonnette
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 17, Problem 109SAE
Interpretation Introduction
Interpretation:
The use of the indicator in the titration having a pH range from 8 to 10 needs to be determined.
Concept introduction:
The pH of a given solution is checked to determine the nature of the solution. The solution could be acidic, basic or neutral in nature.
Various indicators are used for this process of indication. The indicators change colour in order to indicate the nature of the given solution.
Ka value determines the rate of dissociation of the given solution
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Do you do chemistry assignments
Using the conditions of spontaneity to deduce the signs of AH and AS
Use the observations about each chemical reaction in the table below to decide the sign (positive or negative) of the reaction enthalpy AH and reaction entropy
AS.
Note: if you have not been given enough information to decide a sign, select the "unknown" option.
reaction
observations
conclusions
A
This reaction is always spontaneous, but
proceeds slower at temperatures above
120. °C.
ΔΗ is
(pick one)
AS is
(pick one)
ΔΗ is
(pick one)
B
This reaction is spontaneous except above
117. °C.
AS is
(pick one)
ΔΗ is
(pick one)
This reaction is slower below 20. °C than
C
above.
AS is
|(pick one)
?
18
Ar
1
Calculating the pH at equivalence of a titration
Try Again
Your answer is incorrect.
0/5
a
A chemist titrates 70.0 mL of a 0.7089 M hydrocyanic acid (HCN) solution with 0.4574M KOH solution at 25 °C. Calculate the pH at equivalence. The pK of
hydrocyanic acid is 9.21.
Round your answer to 2 decimal places.
Note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of KOH solution added.
pH
=
11.43]
G
00.
18
Ar
B•
Chapter 17 Solutions
General Chemistry: Principles and Modern Applications (11th Edition)
Ch. 17 - For a solution that e 0.275M CH2CH2 COOH...Ch. 17 - For a solution that is 0164 U NH2 and 0.102MNH4Cl...Ch. 17 - Prob. 3ECh. 17 - In Example 16-4, we calculated the percent...Ch. 17 - Calculate [H2OOH-] in a solution that is (a)...Ch. 17 - Calculate [OH-] in a solution that is (a) 0.0062 U...Ch. 17 - What concentration of formate ion, [HCOO-], should...Ch. 17 - What concentration of ammonia. [NH2] , should be...Ch. 17 - Calculate the pH of a buffer that is a. 0.012 M...Ch. 17 - Lactic acid, CH2CH(OH)COOH , is found in sour...
Ch. 17 - Indicate which of the following aqueous solutions...Ch. 17 - The H2PO4-HPO4- combination plays a role in...Ch. 17 - What is the pH of a solution Obtained by adding...Ch. 17 - What the pH of solution prepared by dissolving...Ch. 17 - You wish to prepare a buffer solution w pH = 945...Ch. 17 - You prepare a buffer solution by dissolving 2.00 g...Ch. 17 - If 0.55 ml. of 12 M HCI is added to 0100 L of the...Ch. 17 - If 0.35 mL of 15 P.4 NH is added to 0750 L of the...Ch. 17 - You are asked to prepare e buffer solution why a...Ch. 17 - You are asked to reduce the pH of the 03001 of...Ch. 17 - Given 1.00 L of a solution that is 0.100 hl...Ch. 17 - Given 125mL of a solution that is 0.0500 M CH2NH2...Ch. 17 - A solution of volume 750 mL contars 15.5 mmol...Ch. 17 - A solution of volume 0.500 L contains 1.68 g NH...Ch. 17 - A handbook lets various procedures for preparing...Ch. 17 - An acetic acid-sodium acetate buffer can be...Ch. 17 - A handbook lists the following data: Which of...Ch. 17 - With reference to the indicators listed in...Ch. 17 - In use of acid—base indicators, a. Why is it...Ch. 17 - The indicator methyl red has a pKHIN=4.95 . It...Ch. 17 - Phenol red indicator changes from yellow to red in...Ch. 17 - Thymol blue indicator has two pH ranges. It...Ch. 17 - In the titration of 10.00 mL of 0.04050 M HCI with...Ch. 17 - Solution (a) is 1000 mL of 0.100 N HCI and...Ch. 17 - A 25.00 mL sample of H2PO4(aq) requires 31.15 mL...Ch. 17 - A 2000 ml sample of H2PO4(aq) requires 18.67 mL...Ch. 17 - Two aqueous solutions are mixed 50.0 mL of 0.0150M...Ch. 17 - Two solutions are mixed 100.0 mL of HCI(aq) with...Ch. 17 - Calculate the pH at the points in the titration of...Ch. 17 - Calculate the pH at the points m the titration...Ch. 17 - Calculate the pH at the points in the titration of...Ch. 17 - Calculate the pH at the points lithe titration of...Ch. 17 - Explain why the volume of 0.100 M NeOH required to...Ch. 17 - Explain whether the equivalence point of each of...Ch. 17 - Sketch the titration curves of the following...Ch. 17 - Determine the blowing characteristeristics of the...Ch. 17 - In the titration of 2000 mL of 0175 M NaOH,...Ch. 17 - In the titration of 25.00mL of 0.100M CH2COOH ,...Ch. 17 - Sketch a titration curve (pH versus mL of titrant)...Ch. 17 - Sketch a titration curve (pH versus mL of titrant)...Ch. 17 - For me titration of 25.00 mL of 0.100M NaOH with...Ch. 17 - For the titration of 25.00 mL 0.100M NH2 with...Ch. 17 - Is a solution that is 0.10 M Na2S(aq) likely to be...Ch. 17 - Is a solution of sodium dihydrogen citrate,...Ch. 17 - Sodium phosphate Na2PO4 , is made commecie1y by...Ch. 17 - Both sodium hydrogen carbonate (sodium...Ch. 17 - The pH of a solution of 19.5 g of malonic acid in...Ch. 17 - The ionization constants of ortho-phthalic acid...Ch. 17 - What stoichimetric concentration of the indicated...Ch. 17 - What stocichiometric concentration of the...Ch. 17 - Using appropriate equilibrium constants but...Ch. 17 - Prob. 62ECh. 17 - Sodium hydrogen sulfate NaHSO4 , an acidic salt...Ch. 17 - You are given 250.0mL of 0.100M CH3 CH2 COOH...Ch. 17 - Even though the carbonic acid-hydrogen carbonate...Ch. 17 - Thymol blue in its acid range is not a suitable...Ch. 17 - Rather than calculate the pH for different volumes...Ch. 17 - Use the method of Exercise 67 to determine the...Ch. 17 - A buffer solution can be prepared by starting with...Ch. 17 - You are asked to prepare a KH2PO4-Na2HPO2 solution...Ch. 17 - You are asked to bring the pH of 0.500 L of 0.500...Ch. 17 - Because an acid-base indicator a weak acid, I can...Ch. 17 - The neutralization of NaOH 2by HCl is represented...Ch. 17 - The titration of a weak acid by a weak base a not...Ch. 17 - At times a salt of a we base can be titrated by a...Ch. 17 - Sulfuric acid is a diprotic acid, strong in the...Ch. 17 - Carbonic acid is a weak diprotic acid (H2CO2) with...Ch. 17 - Prob. 78IAECh. 17 - Complete the derivation of equation (17.10)...Ch. 17 - Explain why equation (17.10) fads when applied to...Ch. 17 - Prob. 81IAECh. 17 - Prob. 82IAECh. 17 - Prob. 83IAECh. 17 - Prob. 84IAECh. 17 - Prob. 85IAECh. 17 - Calculate the pH of a solution that is 0.050 U...Ch. 17 - Prob. 87IAECh. 17 - The Henderson-Hasselbalch equation can be written...Ch. 17 - The pH of ocean water depends on the amount of...Ch. 17 - A sample of water contains 23.0 g L1 of Na+ (aq),...Ch. 17 - Prob. 91IAECh. 17 - Prob. 92FPCh. 17 - In some cases the titration curve for a mature of...Ch. 17 - Amino acids contain both an acidic carboxylic acid...Ch. 17 - In your own words, define or explain the following...Ch. 17 - Prob. 96SAECh. 17 - Explain the important distinctions between each...Ch. 17 - Write equations to show how each of the following...Ch. 17 - Sketch the titration curves that you would expect...Ch. 17 - A 2500-mL sample of 0.0100M C8C5COOH (Kg=6.3103)...Ch. 17 - Prob. 101SAECh. 17 - Prob. 102SAECh. 17 - Prob. 103SAECh. 17 - Prob. 104SAECh. 17 - Prob. 105SAECh. 17 - Calculate the pH of a 0.5 M solution of Ca(HSe)2...Ch. 17 - Prob. 107SAECh. 17 - Prob. 108SAECh. 17 - Prob. 109SAECh. 17 - Prob. 110SAECh. 17 - Prob. 111SAE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Biological Macromolecules Naming and drawing the products of aldose oxidation and reduction aw a Fischer projection of the molecule that would produce L-ribonic acid if it were subjected to mildly oxidizing reaction conditions. Click and drag to start drawing a structure. X AP ‡ 1/5 Naor Explanation Check McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Center Accessibilarrow_forward● Biological Macromolecules Identifying the parts of a disaccharide Take a look at this molecule, and then answer the questions in the table below it. CH2OH O H H H OH OH OH H H CH2OH H O OH H OH H H H H OH Is this a reducing sugar? Does this molecule contain a glycosidic bond? If you said this molecule does contain a glycosidic bond, write the symbol describing it. If you said this molecule does contain a glycosidic bond, write the common names (including anomer and enantiomer labels) of the molecules that would be released if that bond were hydrolyzed. If there's more than one molecule, separate each name with a comma. Explanation Check O yes X O no ○ yes O no Uarrow_forwardThe aim of the lab is to measure the sodium content from tomato sauce using the Mohr titration method. There are two groups being: Regular Tomato sauce & Salt Reduced tomato sauce QUESTION: State how you would prepare both Regular & Salt reduced tomato sauce samples for chemical analysis using the Mohr titration methodarrow_forward
- Using the conditions of spontaneity to deduce the signs of AH and AS Use the observations about each chemical reaction in the table below to decide the sign (positive or negative) of the reaction enthalpy AH and reaction entropy AS. Note: if you have not been given enough information to decide a sign, select the "unknown" option. reaction observations conclusions A The reverse of this reaction is always spontaneous but proceeds faster at temperatures above -48. °C. ΔΗ is (pick one) ✓ AS is (pick one) B This reaction is spontaneous except below 114. °C but proceeds at a slower rate below 135. °C. ΔΗ is (pick one) AS is (pick one) ΔΗ is C This reaction is exothermic and proceeds faster at temperatures above -43. °C. (pick one) AS is (pick one) v Х 5 ? 18 Ararrow_forwardion. A student proposes the following Lewis structure for the perchlorate (CIO) io : :0: : Cl : - - : :0: ك Assign a formal charge to each atom in the student's Lewis structure. atom central O formal charge ☐ top O ☐ right O ☐ bottom O ☐ Cl ☐arrow_forwardDecide whether these proposed Lewis structures are reasonable. proposed Lewis structure Yes. Is the proposed Lewis structure reasonable? Cl- : 2: :Z: :Z: N—N : 0: C C1: O CO No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* ☐ Yes. No, it has the wrong number of valence electrons. The correct number is: ☐ No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* | Yes. No, it has the wrong number of valence electrons. The correct number is: No, it has the right number of valence electrons but doesn't satisfy the octet rule. The symbols of the problem atoms are:* | If two or more atoms of the same element don't satisfy the octet rule, just enter the chemical symbol as many times as necessary. For example, if two oxygen atoms don't satisfy the octet rule, enter "0,0". ☑arrow_forward
- Use the observations about each chemical reaction in the table below to decide the sign (positive or negative) of the reaction enthalpy AH and reaction entropy AS. Note: if you have not been given enough information to decide a sign, select the "unknown" option. reaction observations conclusions ΔΗ is (pick one) A This reaction is faster above 103. °C than below. AS is (pick one) ΔΗ is (pick one) B This reaction is spontaneous only above -9. °C. AS is (pick one) ΔΗ is (pick one) C The reverse of this reaction is always spontaneous. AS is (pick one) 18 Ararrow_forwardUse the observations about each chemical reaction in the table below to decide the sign (positive or negative) of the reaction enthalpy AH and reaction entropy AS. Note: if you have not been given enough information to decide a sign, select the "unknown" option. reaction observations conclusions A The reverse of this reaction is always spontaneous but proceeds slower at temperatures below 41. °C. ΔΗ is (pick one) AS is (pick one) ΔΗ is (pick one) B This reaction is spontaneous except above 94. °C. AS is (pick one) This reaction is always spontaneous, but ΔΗ is (pick one) C proceeds slower at temperatures below −14. °C. AS is (pick one) Х 00. 18 Ar 무ㅎ B 1 1arrow_forwardDraw the product of the reaction shown below. Ignore inorganic byproducts. + H CH3CH2OH HCI Drawingarrow_forward
- please explain this in simple termsarrow_forwardK Most Reactive Na (3 pts) Can the metal activity series (shown on the right) or a standard reduction potential table explain why potassium metal can be prepared from the reaction of molten KCI and Na metal but sodium metal is not prepared from the reaction of molten NaCl and K metal? Show how (not). Ca Mg Al с Zn Fe Sn Pb H Cu Ag Au Least Reactivearrow_forward(2 pts) Why is O2 more stable as a diatomic molecule than S2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning


General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning

Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Acid-Base Equilibrium; Author: Bozeman Science;https://www.youtube.com/watch?v=l5fk7HPmo5g;License: Standard YouTube License, CC-BY
Introduction to Titrimetric analysis; Author: Vidya-mitra;https://www.youtube.com/watch?v=uykGVfn9q24;License: Standard Youtube License