(a)
Interpretation:
Whether the ionization of pure acid, common-ion effect, buffer solution or hydrolysis occurs during the reaction of [H3O+] and [CH3COOH] to be high, but [CH3COO-] to be low needs to be explained.
Concept introduction:
Ionization is a process by which any particle (an atom or a molecule) acquires either a positive or a negative charge.
Acids that contain small amounts of covalent molecules/do not contain water are known as pure acids. When this occurs they form ions. Pure acids are poor conductors of electricity.
Any
(b)
Interpretation:
Whether the ionization of pure acid, common-ion effect, buffer solution or hydrolysis occurs during the reaction of [CH3COO-] to be high, but [CH3COOH] and [H3O+] are very low needs to be explained.
Concept introduction:
Ionization is a process by which any particle (an atom or a molecule) acquires either a positive or a negative charge.
Any chemical reaction where a molecule of water ruptures a chemical bond is known as hydrolysis. Mainly used for fragmentation, substitution, and elimination.
Ionization is a process by which any particle (an atom or a molecule) acquires either a positive or a negative charge.
(c)
Interpretation:
Whether the ionization of pure acid, common-ion effect, buffer solution or hydrolysis occurs during the reaction of [CH3COOH] is high, but [H3O+] and [CH3COO-] are low needs to be determined.
Concept introduction:
Acids that contain small amounts of covalent molecules and do not contain water are known as pure acids.
Ionization is a process by which any particle (an atom or a molecule) acquires either a positive or a negative charge.
Any chemical reaction where a molecule of water ruptures a chemical bond is known as hydrolysis. It is mainly used for fragmentation, substitution, and elimination.
(d)
Interpretation:
Whether ionization of pure acid, common-ion effect, buffer solution or hydrolysis occurs during the reaction of [CH3COOH] and [CH3COO-] are high, but [H3O+] is low, needs to be determined.
Concept introduction:
Acids that contain small amounts of covalent molecules and do not contain water are known as pure acids.
Ionization is a process by which any particle (an atom or a molecule) acquires either a positive or a negative charge.
Any chemical reaction where a molecule of water ruptures a chemical bond is known as hydrolysis. It is mainly used for fragmentation, substitution, and elimination.
Want to see the full answer?
Check out a sample textbook solutionChapter 17 Solutions
General Chemistry: Principles and Modern Applications (11th Edition)
- You have a solution of the weak acid HA and add some HCl to it. What are the major species in the solution? What do you need to know to calculate the pH of the solution, and how would you use this information? How does the pH of the solution of just the HA compare with that of the final mixture? Explain.arrow_forward. Which component of a buffered solution is capable of combining with an added strong acid? Using your example from Exercise 60, show how this component would react with added HC1.arrow_forwardSketch the titration curve for a weak acid titrated by a strong base. When performing calculations concerning weak acidstrong base titrations, the general two-slep procedure is to solve a stoichiometry problem first, then to solve an equilibrium problem to determine the pH. What reaction takes place in the stoichiometry part of the problem? What is assumed about this reaction? At the various points in your titration curve, list the major species present after the strong base (NaOH, for example) reacts to completion with the weak acid, HA. What equilibrium problem would you solve at the various points in your titration curve to calculate the pH? Why is pH 7.0 at the equivalence point of a weak acid-strong base titration? Does the pH at the halfway point to equivalence have to be less than 7.0? What does the pH at the halfway point equal? Compare and contrast the titration curves for a strong acidstrong base titration and a weak acidstrong base titration.arrow_forward
- For conjugate acidbase pairs, how are Ka and Kb related? Consider the reaction of acetic acid in water CH3CO2H(aq)+H2O(l)CH3CO2(aq)+H3O+(aq) where Ka = 1.8 105 a. Which two bases are competing for the proton? b. Which is the stronger base? c. In light of your answer to part b. why do we classify the acetate ion (CH3CO2) as a weak base? Use an appropriate reaction to justify your answer. In general, as base strength increases, conjugate acid strength decreases. Explain why the conjugate acid of the weak base NH3 is a weak acid. To summarize, the conjugate base of a weak acid is a weak base and the conjugate acid of a weak base is a weak acid (weak gives you weak). Assuming Ka for a monoprotic strong acid is 1 106, calculate Kb for the conjugate base of this strong acid. Why do conjugate bases of strong acids have no basic properties in water? List the conjugate bases of the six common strong acids. To tie it all together, some instructors have students think of Li+, K+, Rb+, Cs+, Ca2+, Sr2+, and Ba2+ as the conjugate acids of the strong bases LiOH, KOH. RbOH, CsOH, Ca(OH)2, Sr(OH)2, and Ba(OH)2. Although not technically correct, the conjugate acid strength of these cations is similar to the conjugate base strength of the strong acids. That is, these cations have no acidic properties in water; similarly, the conjugate bases of strong acids have no basic properties (strong gives you worthless). Fill in the blanks with the correct response. The conjugate base of a weak acid is a_____base. The conjugate acid of a weak base is a_____acid. The conjugate base of a strong acid is a_____base. The conjugate acid of a strong base is a_____ acid. (Hint: Weak gives you weak and strong gives you worthless.)arrow_forwardMixing together solutions of acetic acid and sodium hydroxide can make a buffered solution. Explain. How does the amount of each solution added change the effectiveness of the buffer?arrow_forwardOne of the most challenging parts of solving acidbase problems is writing out the correct equation. When a strong acid or a strong base is added to solutions, they are great at what they do, and we always react them first. If a strong acid is added to a buffer, what reacts with the H+ from the strong acid and what are the products? If a strong base is added to a buffer, what reacts with the OH from the strong base and what are the products? Problems involving the reaction of a strong acid or strong base are assumed to be stoichiometry problems and not equilibrium problems. What is assumed when a strong acid or strong base reacts to make it a stoichiometry problem?arrow_forward
- A friend asks the following: Consider a buffered solution made up of the weak acid HA and its salt NaA. If a strong base like NaOH is added, the HA reacts with the OH to form A. Thus the amount of acid (HA) is decreased, and the amount of base (A) is increased. Analogously, adding HCI to the buffered solution forms more of the acid (HA) by reacting with the base (A). Thus how can we claim that a buffered solution resists changes in the pH of the solution? How would you explain buffering to this friend?arrow_forward8-55 We commonly refer to a buffer as consisting of approximately equal molar amounts of a weak acid and its conjugate base—for example, CH3COOH and CH3COO-. Is it also possible to have a buffer consisting of approximately equal molar amounts of a weak base and its conjugate acid? Explain.arrow_forwardIn dilute aqueous solution HF acts as a weak acid. However, pure liquid HF (boiling point = 19.5 C) is a strong acid. In liquid HF, HNO3 acts like a base and accepts protons. The acidity of liquid HF can be increased by adding one of several inorganic fluorides that ale Lewis acids and accept F- ion (for example, BF3 or SbF5]. Write balanced chemical equations for the reaction of pure HNO3 with pure HF and of pure HF with BF3.arrow_forward
- Consider a solution prepared by mixing a weak acid HA. HCl, and NaA. Which of the following statements best describes what happens? a. The H+ from the HCl reacts completely with the A from the NaA. Then the HA dissociates somewhat. b. The H+ from the HCl reacts somewhat with the A from the NaA to make HA, while the HA is dissociating. Eventually you have equal amounts of everything. c. The H+ from the HCl reacts somewhat with the A from the NaA to make HA while the HA is dissociating. Eventually all the reactions have equal rates. d. The H+ from the HCl reacts completely with the A from the NaA. Then the HA dissociates somewhat until too much H+ and A are formed, so the H+ and A react to form HA, and so on. Eventually equilibrium is reached. Justify your choice, and for choices you did not pick, explain what is wrong with them.arrow_forwardConsider the following mathematical expressions. a. [H+] = [HA]0 b. [H+] = (Ka [HA]0)1/2 c. [OH] = 2[B]0 d. [OH] = (Kb [B]0)1/2 For each expression, give three solutions where the mathematical expression would give a good approximation for the [H+] or [OH]. [HA]0 and [B]0 represent initial concentrations of an acid or a base.arrow_forwardAmino acids are an important group of compounds. At low pH, both the carboxylic acid group (CO2H) and the amine group (NHR) are protonated. However, as the pH of the solution increases (say, by adding base), the carboxylic acid proton is removed, usually at a pH between 2 and 3. In a middle range of pHs, therefore, the amine group is protonated, but the carboxylic acid group has lost the proton. (This is called a zwitterion.) At more basic pH values, the amine proton is dissociated. What is the pH of a 0.20 M solution of alanine hydrochloride, [NH3CHCH3CO2H]Cl?arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning