Chemistry: The Molecular Nature of Matter and Change
Chemistry: The Molecular Nature of Matter and Change
8th Edition
ISBN: 9781259631757
Author: Martin Silberberg Dr., Patricia Amateis Professor
Publisher: McGraw-Hill Education
bartleby

Videos

Question
Book Icon
Chapter 17, Problem 17.67P

(a)

Interpretation Introduction

Interpretation:

The effect of increase in the container volume for the given amounts of reactants and products has to be predicted.

  CH3OH (l) CH3OH (g)

Concept Introduction:

Le Chatelier’s principle:

Le Chatelier’s principle states that the changes in the temperature, pressure, volume and concentration of the system results in the change in system to attain new equilibrium.  It is used to understand the conditions of a reaction which favours increased product formation.

Change in equilibrium due to pressure changes:

On increase in the system pressure, the equilibrium shifts towards fewer moles of gas, because, for gases,

  increase in pressure = decrease in volume.

On decrease in the system pressure, the equilibrium shifts towards more moles of gas, because, for gases,

  decrease in pressure = increase in volume.

(b)

Interpretation Introduction

Interpretation:

The effect of increase in the container volume for the given amounts of reactants and products has to be predicted.

  CH4 (g) + NH3 (g) HCN (g) + 3H2(g)

Concept Introduction:

Le Chatelier’s principle:

Le Chatelier’s principle states that the changes in the temperature, pressure, volume and concentration of the system results in the change in system to attain new equilibrium.  It is used to understand the conditions of a reaction which favours increased product formation.

Change in equilibrium due to pressure changes:

On increase in the system pressure, the equilibrium shifts towards fewer moles of gas, because, for gases,

  increase in pressure = decrease in volume.

On decrease in the system pressure, the equilibrium shifts towards more moles of gas, because, for gases,

  decrease in pressure = increase in volume.

Blurred answer
Students have asked these similar questions
Correct each molecule in the drawing area below so that it has the skeletal ("line") structure it would have if it were dissolved in a 0.1 M aqueous solution of HCI. If there are no changes to be made, check the No changes box under the drawing area. No changes. HO Explanation Check NH, 2 W O :□ G ©2025 M unter Accessibility
An expression for the root mean square velocity, vrms, of a gas was derived. Using Maxwell’s velocity distribution, one can also calculate the mean velocity and the most probable velocity (mp) of a collection of molecules. The equations used for these two quantities are vmean=(8RT/πM)1/2 and vmp=(2RT/M)1/2 These values ​​have a fixed relationship to each other.(a) Arrange these three quantities in order of increasing magnitude.(b) Show that the relative magnitudes are independent of the molar mass of the gas.(c) Use the smallest velocity as a reference for establishing the order of magnitude and determine the relationship between the larger and smaller values.
The reaction of solid dimethylhydrazine, (CH3)2N2H2, and liquefied dinitrogen tetroxide, N2O4, has been investigated for use as rocket fuel. The reaction produces the gases carbon dioxide (CO2), nitrogen (N2), and water vapor (H2O), which are ejected in the exhaust gases. In a controlled experiment, solid dimethylhydrazine was reacted with excess dinitrogen tetroxide, and the gases were collected in a closed balloon until a pressure of 2.50 atm and a temperature of 400.0 K were reached.(a) What are the partial pressures of CO2, N2, and H2O?(b) When the CO2 is removed by chemical reaction, what are the partial pressures of the remaining gases?

Chapter 17 Solutions

Chemistry: The Molecular Nature of Matter and Change

Ch. 17.5 - Prob. 17.6AFPCh. 17.5 - Prob. 17.6BFPCh. 17.5 - Prob. 17.7AFPCh. 17.5 - Prob. 17.7BFPCh. 17.5 - Prob. 17.8AFPCh. 17.5 - Prob. 17.8BFPCh. 17.5 - Prob. 17.9AFPCh. 17.5 - Prob. 17.9BFPCh. 17.5 - An inorganic chemist studying the reactions of...Ch. 17.5 - A chemist studying the production of nitrogen...Ch. 17.6 - In a study of glass etching, a chemist examines...Ch. 17.6 - Prob. 17.11BFPCh. 17.6 - Prob. 17.12AFPCh. 17.6 - Prob. 17.12BFPCh. 17.6 - Prob. 17.13AFPCh. 17.6 - Should T be increased or decreased to yield more...Ch. 17.6 - Prob. 17.14AFPCh. 17.6 - Prob. 17.14BFPCh. 17.6 - Many metabolites are products in branched...Ch. 17 - Prob. 17.1PCh. 17 - When a chemical company employs a new reaction to...Ch. 17 - If there is no change in concentrations, why is...Ch. 17 - Prob. 17.4PCh. 17 - Prob. 17.5PCh. 17 - Prob. 17.6PCh. 17 - Prob. 17.7PCh. 17 - Prob. 17.8PCh. 17 - Prob. 17.9PCh. 17 - Does Q for the formation of 1 mol of NO from its...Ch. 17 - Does Q for the formation of 1 mol of NH3 from H2...Ch. 17 - Balance each reaction and write its reaction...Ch. 17 - Prob. 17.13PCh. 17 - Prob. 17.14PCh. 17 - Prob. 17.15PCh. 17 - At a particular temperature, Kc = 1.6×10−2...Ch. 17 - Prob. 17.17PCh. 17 - Balance each of the following examples of...Ch. 17 - Balance each of the following examples of...Ch. 17 - Balance each of the following examples of...Ch. 17 - Balance each of the following examples of...Ch. 17 - Prob. 17.22PCh. 17 - Prob. 17.23PCh. 17 - Prob. 17.24PCh. 17 - Prob. 17.25PCh. 17 - When are Kc and Kp equal, and when are they not? Ch. 17 - A certain reaction at equilibrium has more moles...Ch. 17 - Prob. 17.28PCh. 17 - Determine Δngas for each of the following...Ch. 17 - Prob. 17.30PCh. 17 - Prob. 17.31PCh. 17 - Prob. 17.32PCh. 17 - Prob. 17.33PCh. 17 - Prob. 17.34PCh. 17 - The following molecular scenes depict the aqueous...Ch. 17 - At 425°C, Kp = 4.18 × 10−9 for the...Ch. 17 - At 100°C, Kp = 60.6 for the reaction 2NOBr(g) ⇌...Ch. 17 - The water-gas shift reaction plays a central role...Ch. 17 - In the 1980s, CFC-11 was one of the most heavily...Ch. 17 - For a problem involving the catalyzed reaction of...Ch. 17 - What is the basis of the approximation that avoids...Ch. 17 - Prob. 17.42PCh. 17 - Gaseous ammonia was introduced into a sealed...Ch. 17 - Prob. 17.44PCh. 17 - Prob. 17.45PCh. 17 - Prob. 17.46PCh. 17 - Prob. 17.47PCh. 17 - Prob. 17.48PCh. 17 - Prob. 17.49PCh. 17 - Prob. 17.50PCh. 17 - Nitrogen dioxide decomposes according to the...Ch. 17 - Hydrogen iodide decomposes according to the...Ch. 17 - Compound A decomposes according to the...Ch. 17 - In an analysis of interhalogen reactivity, 0.500...Ch. 17 - A toxicologist studying mustard gas, S(CH2CH2Cl)2,...Ch. 17 - Prob. 17.56PCh. 17 - A key step in the extraction of iron from its ore...Ch. 17 - What does “disturbance” mean in Le Châtelier’s...Ch. 17 - Prob. 17.59PCh. 17 - Prob. 17.60PCh. 17 - Prob. 17.61PCh. 17 - Le Châtelier’s principle is related ultimately to...Ch. 17 - An equilibrium mixture of two solids and a gas, in...Ch. 17 - Consider this equilibrium system: CO(g) + Fe3O4(s)...Ch. 17 - Sodium bicarbonate undergoes thermal decomposition...Ch. 17 - Prob. 17.66PCh. 17 - Prob. 17.67PCh. 17 - Predict the effect of decreasing the container...Ch. 17 - Prob. 17.69PCh. 17 - Prob. 17.70PCh. 17 - Prob. 17.71PCh. 17 - Prob. 17.72PCh. 17 - Prob. 17.73PCh. 17 - Prob. 17.74PCh. 17 - The formation of methanol is important to the...Ch. 17 - Prob. 17.76PCh. 17 - The oxidation of SO2 is the key step in H2SO4...Ch. 17 - A mixture of 3.00 volumes of H2 and 1.00 volume of...Ch. 17 - You are a member of a research team of chemists...Ch. 17 - For the following equilibrium system, which of the...Ch. 17 - Prob. 17.81PCh. 17 - Prob. 17.82PCh. 17 - Prob. 17.83PCh. 17 - Prob. 17.84PCh. 17 - Prob. 17.85PCh. 17 - Prob. 17.86PCh. 17 - Prob. 17.87PCh. 17 - Prob. 17.88PCh. 17 - When 0.100 mol of CaCO3(s) and 0.100 mol of CaO(s)...Ch. 17 - Prob. 17.90PCh. 17 - Prob. 17.91PCh. 17 - Prob. 17.92PCh. 17 - Highly toxic disulfur decafluoride decomposes by a...Ch. 17 - A study of the water-gas shift reaction (see...Ch. 17 - Prob. 17.95PCh. 17 - Prob. 17.96PCh. 17 - Prob. 17.97PCh. 17 - Prob. 17.98PCh. 17 - Prob. 17.99PCh. 17 - Prob. 17.100PCh. 17 - The molecular scenes below depict the reaction Y ⇌...Ch. 17 - For the equilibrium H2S(g) ⇌ 2H2(g) + S2(g) Kc =...Ch. 17 - Prob. 17.103PCh. 17 - Prob. 17.104PCh. 17 - The kinetics and equilibrium of the decomposition...Ch. 17 - Isopentyl alcohol reacts with pure acetic acid to...Ch. 17 - Isomers Q (blue) and R (yellow) interconvert. They...Ch. 17 - Glauber’s salt, Na2SO4·10H2O, was used by J. R....Ch. 17 - Prob. 17.109PCh. 17 - Synthetic diamonds are made under conditions of...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY