Concept explainers
Calculate the concentration of HNO3 in a solution at 25°C that has pH (a) 2.06, (b) 1.77, and (c) 6.01.
(a)
Interpretation:
The concentration of
Concept Information:
Strong acids:
In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium.
pH definition:
The concentration of hydrogen ion is measured using
The
On rearranging, the concentration of hydrogen ion
To calculate: The concentration of
Answer to Problem 8PPA
Answer
The concentration of
Explanation of Solution
In a strong acid solution, the molar concentration of hydrogen ion is equal to the acid concentration
The pH of the given
The concentration of hydrogen ion can be calculated as follows,
The concentration of hydrogen ion is
Therefore, the concentration of the given
(b)
Interpretation:
The concentration of
Concept Information:
Strong acids:
In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium.
pH definition:
The concentration of hydrogen ion is measured using
The
On rearranging, the concentration of hydrogen ion
To calculate: The concentration of
Answer to Problem 8PPA
Answer
The concentration of
Explanation of Solution
In a strong acid solution, the molar concentration of hydrogen ion is equal to the acid concentration
The pH of the given
The concentration of hydrogen ion can be calculated as follows,
The concentration of hydrogen ion is
Therefore, the concentration of the given
(c)
Interpretation:
The concentration of
Concept Information:
Strong acids:
In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium.
pH definition:
The concentration of hydrogen ion is measured using
The
On rearranging, the concentration of hydrogen ion
To calculate: The concentration of
Answer to Problem 8PPA
Answer
The concentration of
Explanation of Solution
In a strong acid solution, the molar concentration of hydrogen ion is equal to the acid concentration
The pH of the given
The concentration of hydrogen ion can be calculated as follows,
The concentration of hydrogen ion is
Therefore, the concentration of the given
Want to see more full solutions like this?
Chapter 16 Solutions
Chemistry: Atoms First
- For the SN2 reaction, draw the major organic product and select the correct (R) or (S) designation around the stereocenter carbon in the organic substrate and organic product. Include wedge-and-dash bonds and draw hydrogen on a stereocenter. Η 1 D EN Select Draw Templates More C H D N Erasearrow_forwardQ9: Explain why compound I is protonated on O while compound II is protonated on N. NH2 NH2 I IIarrow_forwardAN IR spectrum, a 13 CMR spectrum, and a 1 HMR spectrum were obtained for an unknown structure with a molecular formula of C9H10. Draw the structure of this compound.arrow_forward
- AN IR spectrum, a 13 CMR spectrum, and a 1 HMR spectrum were obtained for an unknown structure with a molecular formula of C9H10. Draw the structure of this compound.arrow_forward(a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3¯)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forwardQ8: Draw the resonance structures for the following molecule. Show the curved arrows (how you derive each resonance structure). Circle the major resonance contributor.arrow_forward
- Q4: Draw the Lewis structures for the cyanate ion (OCN) and the fulminate ion (CNO). Draw all possible resonance structures for each. Determine which form for each is the major resonance contributor.arrow_forwardIn the following molecule, indicate the hybridization and shape of the indicated atoms. CH3 N CH3 HÖ: H3C CI: ::arrow_forwardQ3: Draw the Lewis structures for nitromethane (CH3NO2) and methyl nitrite (CH3ONO). Draw at least two resonance forms for each. Determine which form for each is the major resonance contributor.arrow_forward
- Q1: Draw a valid Lewis structures for the following molecules. Include appropriate charges and lone pair electrons. If there is more than one Lewis structure available, draw the best structure. NH3 Sulfate Boron tetrahydride. C3H8 (linear isomer) OCN NO3 CH3CN SO2Cl2 CH3OH2*arrow_forwardQ2: Draw all applicable resonance forms for the acetate ion CH3COO. Clearly show all lone pairs, charges, and arrow formalism.arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning