The concentration of HNO 3 in the given solutions at 25 ∘ C has to be calculated Concept Information: In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium. At equilibrium (after the completion of ionization), the concentration of strong acid will be zero since no molecules remains after ionization. The concentration after ionization will be as follows, pH Definition: The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale. The pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration. pH = -log[H 3 O + ] Rearranging the above equation to solve for [H + ] ion concentration, we get [H 3 O + ] = 10 -pH
The concentration of HNO 3 in the given solutions at 25 ∘ C has to be calculated Concept Information: In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium. At equilibrium (after the completion of ionization), the concentration of strong acid will be zero since no molecules remains after ionization. The concentration after ionization will be as follows, pH Definition: The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale. The pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration. pH = -log[H 3 O + ] Rearranging the above equation to solve for [H + ] ion concentration, we get [H 3 O + ] = 10 -pH
The concentration of HNO3 in the given solutions at 25∘C has to be calculated
Concept Information:
In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium.
At equilibrium (after the completion of ionization), the concentration of strong acid will be zero since no molecules remains after ionization.
The concentration after ionization will be as follows,
pH Definition:
The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale.
The pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration.
pH=-log[H3O+]
Rearranging the above equation to solve for [H+] ion concentration, we get
[H3O+]=10-pH
(b)
Interpretation Introduction
Interpretation:
The concentration of HNO3 in the given solutions at 25∘C has to be calculated
Concept Information:
In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium.
At equilibrium (after the completion of ionization), the concentration of strong acid will be zero since no molecules remains after ionization.
The concentration after ionization will be as follows,
pH Definition:
The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale.
The pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration.
pH=-log[H3O+]
Rearranging the above equation to solve for [H+] ion concentration, we get
[H3O+]=10-pH
(c)
Interpretation Introduction
Interpretation:
The concentration of HNO3 in the given solutions at 25∘C has to be calculated
Concept Information:
In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium.
At equilibrium (after the completion of ionization), the concentration of strong acid will be zero since no molecules remains after ionization.
The concentration after ionization will be as follows,
pH Definition:
The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale.
The pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration.
pH=-log[H3O+]
Rearranging the above equation to solve for [H+] ion concentration, we get
3. Name this ether correctly.
H₁C
H3C
CH3
CH3
4. Show the best way to make the ether in #3 by a
Williamson Ether Synthesis.
Start from an alcohol or phenol.
5. Draw the structure of an example of a sulfide.
1. Which one(s) of these can be oxidized with CrO3 ?
(could be more than one)
a) triphenylmethanol
b) 2-pentanol
c) Ethyl alcohol
d)
CH3
2. Write in all the product(s) of this reaction. Label them
as "major" or "minor".
2-methyl-2-hexanol
H2SO4, heat
3) Determine if the pairs are constitutional isomers, enantiomers, diastereomers, or mesocompounds.
(4 points)