Concept explainers
16.102 through 16.105 A drum of 4-in. radius is attached to a disk of 8-in. radius. The disk and drum have a total weight of 10 lb and a combined radius of gyration of 6 in. A cord is attached as shown and pulled with a force P of magnitude 5 lb. Knowing that the disk rolls without sliding, determine (a) the angular acceleration of the disk and the acceleration of G, (b) the minimum value of the coefficient of static friction compatible with this motion.
Fig. P16.100 and P16.104
Want to see the full answer?
Check out a sample textbook solutionChapter 16 Solutions
VECTOR MECH. FOR EGR: STATS & DYNAM (LL
Additional Engineering Textbook Solutions
Introduction to Heat Transfer
Mechanics of Materials, 7th Edition
Mechanics of Materials (10th Edition)
Engineering Mechanics: Statics & Dynamics (14th Edition)
Vector Mechanics for Engineers: Dynamics
Fluid Mechanics Fundamentals And Applications
- The steel roll shown has a mass of 1200 kg, a centroidal radius of gyration of 150 mm, and is lifted by two cables looped around its shaft. Knowing that for each cable TA = 3100 N and TB = 3300 N, determine (a) the angular acceleration of the roll, (b) the acceleration of its mass center.arrow_forwardThe 8-in. radius brake drum is attached to a larger flywheel that is not shown. The total mass moment of inertia of the drum and the flywheel is 15 lb.ft.s2 and the coefficient of kinetic friction between the drum and the brake shoe is 0.40. Knowing that the angular velocity of the flywheel is 450 rpm clockwise when a force P of magnitude 65 lbf. is applied to the pedal C, determine the number of the revolutions executed by the flywheel before it comes to rest. (The final answer should be in two decimal places with correct units)arrow_forwardA drum of 4-in. radius is attached to a disk of 8-in. radius. The disk and drum have a total weight of 10 lb and a combined radius of gyration of 6 in. A cord is attached as shown and pulled with a force P of magnitude 5 lb. Knowing that the disk rolls without sliding, determine (a) the angular acceleration of the disk and the acceleration of G, (b) the minimum value of the coefficient of static friction compatible with this motion.arrow_forward
- The 8-in. radius brake drum is attached to a larger flywheel that is not shown. The total mass moment of inertia of the drum and the flywheel is 15 Ib.ft.s2 and the coefficient of kinetic friction between the drum and the brake shoe is 0.40. Knowing that the angular velocity of the flywheel is 450 rpm clockwise when a force P of magnitude 65 lbf. is applied to the pedal C, determine the number of the revolutions executed by the flywheel before it comes to rest. 6 in. 10 in. 8 in. 15 in.arrow_forwardThe 200-mm radius brake drum is attached to a larger flywheel that is not shown. The total mass moment of inertia of the drum and the flywheel is 20 kg.m² and the coefficient of kinetic friction between the drum and the brake shoe at B is 0.35. Knowing that the angular velocity of the flywheel is 360 rpm counterclockwise when a force P of magnitude 350 N is applied to the pedal C, determine the number of revolutions executed by the flywheel before it comes to rest. 150 mm 250 mm 200 mm B 375 mmarrow_forwardQuestion 4: The brake drum of radius 10 cm is attached is a larger flywheel that is not shown. The total mass moment of inertia of the drum and the flywheel is 50 kg.cm? and the coefficient of kinetic friction between the drum and the brake shoe is 0.35. Knowing that the angular velocity of the flywheel is 360 rpm counterclockwise when a force P of magnitude 40 N is applied to the pedal C, determine the number of revolutions executed by the flywheel before it comes to rest. 15 сm |A 25 cm D 10 cm 35 cm-arrow_forward
- 10 in. B 15 in. 6 in. A 8 in. D The 8-inch radius brake drum is attached to a flywheel not shown. The total mass moment of inertia of the drum and flywheel is 13 slug ft2, about an axis perpendicular to the wall through its center D, and the coefficient of kinetic friction between the drum and brake shoe at B is 0.40. Knowing that the angular velocity of the flywheel is 390 rev/min, clockwise, when a force P of magnitude 100 lb is applied to pedal C, determine the number of revolutions the flywheel makes before coming to a stop..arrow_forward16.25 The 160-mm-radius brake drum is attached to a larger flywheel that is not shown. The total mass moment of inertia of the drum and the fly- wheel is 18 kg m and the coefficient of kinetic friction between the drum and the brake shoe is 0.35. Knowing that the angular velocity of the flywheel is 360 rpm counterclockwise when a force P of magnitude 300 N is applied to the pedal C, determine the number of revolutions executed by the fly- wheel before it comes to rest. 16.26 Solve Prob. 16.25 assuming that the initial angular velocity of the flywheel is 360 rpm clockwise. 200 mm Fig. P16.25 120 min 160 mm 300 mm- Darrow_forwardGear A weighs 1 lb and has a radius of gyration of 1.3 in.; gear B weighs 6 lb and has a radius of gyration of 3 in.; gear C weighs 9 lb and has a radius of gyration of 4.3 in. Knowing a couple M of constant magnitude of 40 lb-in. is applied to gear A, determine (a) the angular acceleration of gear C, (b) the tangential force that gear B exerts on gear C. M A 2 in. 2 in. borg J 4 in. B 6 in. с w ណarrow_forward
- Each of the gears A and B has a mass of 2.4 kg and a radius of gyration of 60 mm, while gear C has a mass of 12 kg and a radius of gyration of 150 mm. A couple M of constant magnitude 10 N.m is applied to gear C determine a ) the number of revolutions of gear C required for its angular velocity to increase from 100 to 450 rpm, (b) the corresponding tangential force acting on gear A.arrow_forward5. AS-kg uniform disk is attached to the 3-kg uniform rod BC by means of a frictionless pin AB. An elastic cord is wound around the edge of the disk and is attached to a ring at E. Both ring E and rod BC can rotate freely about the vertical shaft. Knowing that the system is released from rest when the tension in the elastic cord is 15 N, determine (a) the angular acceleration of the disk, (b) the acceleration of the center of the disk. 150 mim C E B 75 mmA Darrow_forwardA 6000-lb flywheel requires 1500 revolutions to coast to rest from an angular velocity of 300 rpm. Knowing that the radius of gyration of the flywheel is 36 in. and I = m-k^2, determine the magnitude of the couple M due to kinetic friction in the bearings in Ib-ft.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY