Vector Mechanics For Engineers
12th Edition
ISBN: 9781259977237
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16.1, Problem 16.43P
To determine
i.
The angular acceleration of disk A and B.
To determine
ii.
TDhe reaction at support C.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Disk A has mass mA = 4.5 kg, radius rA = 278 mm, and initial angular velocity ω0A = 300 rpm clockwise. Disk B has mass mB = 1.0 kg, radius rB = 199 mm, and is at rest when it comes into contact with disk A. Knowing that μk = 0.45 between the disks and neglecting rolling friction ,
Disk A, of weight 5 lb and radius r = 3 in., is at rest when it is placed in contact with a belt that moves at a constant speed v = 50 ft/s. Knowing that μk = 0.20 between the disk and the belt, determine the time required for the disk to reach a constant angular velocity.
A 5-kg homogeneous disk with a radius of 0.2 m is connected to a spring (k=50 N/m) as shown. At the instant shown (position 1), the spring is undeformed. The disk is released from rest and rolls without slipping to position 2, which is 0.1 m down the
25-degree incline. A clockwise constant 2 N-m couple is applied to the disk as it rolls down the inclined surface.
Note: I disk = mR²2
2 N-m
0.2
5-kg
25°
k = 50 N/m
10000000
1. Which of the following forces does negative work on the system?
Friction between the disk and the inclined surface + x
Mark 0.00 out of 20.00
2. Which of the following best approximates the magnitude of the work done by the spring?
0.250 J + ✓
3. Which of the following best approximates the work done by the 2 N-m couple?
-1.000 J + ✓
4. Which of the following gives the correct expression of the kinetic energy of the system at position 2 in terms of the disk's angular velocity, w₂?
0.15 w2*2 +
4.53 rad/s + x
5. Which of the following best approximates the magnitude…
Chapter 16 Solutions
Vector Mechanics For Engineers
Ch. 16.1 - Two pendulums, A and B, with the masses and...Ch. 16.1 - Two pendulums, A and B, with the masses and...Ch. 16.1 - Two solid cylinders, A and B, have the same mass m...Ch. 16.1 - A 6-ft board is placed in a truck with one end...Ch. 16.1 - Prob. 16.F2PCh. 16.1 - Two uniform disks and two cylinders are assembled...Ch. 16.1 - Prob. 16.F4PCh. 16.1 - A 60-Ib uniform thin panel is placed in a truck...Ch. 16.1 - A 60-lb uniform thin panel is placed in a truck...Ch. 16.1 - Knowing that the coefficient of static friction...
Ch. 16.1 - Prob. 16.4PCh. 16.1 - A uniform rod BC of mass 4 kg is connected to a...Ch. 16.1 - A 2000-kg truck is being used to lift a 400-kg...Ch. 16.1 - The support bracket shown is used to transport a...Ch. 16.1 - Prob. 16.8PCh. 16.1 - A 20-kg cabinet is mounted on casters that allow...Ch. 16.1 - Prob. 16.10PCh. 16.1 - A completely filled barrel and its contents have a...Ch. 16.1 - A 40-kg vase has a 200-mm-diameter base and is...Ch. 16.1 - Prob. 16.13PCh. 16.1 - Bars AB and BE, each with a mass of 4 kg, are...Ch. 16.1 - At the instant shown, the tensions in the vertical...Ch. 16.1 - Three bars, each of mass 3 kg, are welded together...Ch. 16.1 - Prob. 16.17PCh. 16.1 - Prob. 16.18PCh. 16.1 - Prob. 16.19PCh. 16.1 - The coefficients of friction between the 30-lb...Ch. 16.1 - Prob. 16.21PCh. 16.1 - Prob. 16.22PCh. 16.1 - Prob. 16.23PCh. 16.1 - Prob. 16.24PCh. 16.1 - Prob. 16.25PCh. 16.1 - Prob. 16.26PCh. 16.1 - Prob. 16.27PCh. 16.1 - Solve Prob. 16.27, assuming that the initial...Ch. 16.1 - The 100-mm-radius brake drum is attached to a...Ch. 16.1 - The 180-mm-radius disk is at rest when it is...Ch. 16.1 - Solve Prob. 16.30, assuming that the direction of...Ch. 16.1 - In order to determine the mass moment of inertia...Ch. 16.1 - Prob. 16.33PCh. 16.1 - Each of the double pulleys shown has a mass moment...Ch. 16.1 - Prob. 16.35PCh. 16.1 - Solve Prob. 16.35, assuming that the couple M is...Ch. 16.1 - Gear A weighs 1 lb and has a radius of gyration of...Ch. 16.1 - The 25-lb double pulley shown is at rest and in...Ch. 16.1 - A belt of negligible mass passes between cylinders...Ch. 16.1 - Solve Prob. 16.39 for P=2.00lb .Ch. 16.1 - Disk A has a mass of 6 kg and an initial angular...Ch. 16.1 - Prob. 16.42PCh. 16.1 - Prob. 16.43PCh. 16.1 - Disk B is at rest when it is brought into contact...Ch. 16.1 - Cylinder A has an initial angular velocity of 720...Ch. 16.1 - Prob. 16.46PCh. 16.1 - Prob. 16.47PCh. 16.1 - Prob. 16.48PCh. 16.1 - (a) In Prob. 16.48, determine the point of the rod...Ch. 16.1 - A force P with a magnitude of 3 N is applied to a...Ch. 16.1 - Prob. 16.51PCh. 16.1 - A 250-lb satellite has a radius of gyration of 24...Ch. 16.1 - Prob. 16.53PCh. 16.1 - A uniform semicircular plate with a mass of 6 kg...Ch. 16.1 - Prob. 16.55PCh. 16.1 - Prob. 16.56PCh. 16.1 - The 12-lb uniform disk shown has a radius of r=3.2...Ch. 16.1 - Prob. 16.58PCh. 16.1 - Prob. 16.59PCh. 16.1 - Prob. 16.60PCh. 16.1 - The 400-lb crate shown is lowered by means of two...Ch. 16.1 - Prob. 16.62PCh. 16.1 - Prob. 16.63PCh. 16.1 - A beam AB with a mass m and of uniform...Ch. 16.1 - Prob. 16.65PCh. 16.1 - Prob. 16.66PCh. 16.1 - Prob. 16.67PCh. 16.1 - Prob. 16.68PCh. 16.1 - Prob. 16.69PCh. 16.1 - Solve Prob. 16.69, assuming that the sphere is...Ch. 16.1 - A bowler projects an 8-in.-diameter ball weighing...Ch. 16.1 - Solve Prob. 16.71, assuming that the bowler...Ch. 16.1 - A uniform sphere of radius r and mass m is placed...Ch. 16.1 - A sphere of radius r and mass m has a linear...Ch. 16.2 - A cord is attached to a spool when a force P is...Ch. 16.2 - A cord is attached to a spool when a force P is...Ch. 16.2 - A front-wheel-drive car starts from rest and...Ch. 16.2 - A front-wheel-drive car starts from rest and...Ch. 16.2 - Prob. 16.F5PCh. 16.2 - Prob. 16.F6PCh. 16.2 - Prob. 16.F7PCh. 16.2 - Prob. 16.F8PCh. 16.2 - Show that the couple I of Fig. 16.15 can be...Ch. 16.2 - Prob. 16.76PCh. 16.2 - Prob. 16.77PCh. 16.2 - A uniform slender rod of length L=36 in. and...Ch. 16.2 - Prob. 16.79PCh. 16.2 - Prob. 16.80PCh. 16.2 - Prob. 16.81PCh. 16.2 - Prob. 16.82PCh. 16.2 - Prob. 16.83PCh. 16.2 - A uniform rod of length L and mass m is supported...Ch. 16.2 - Prob. 16.85PCh. 16.2 - Prob. 16.86PCh. 16.2 - Prob. 16.87PCh. 16.2 - Two identical 4-lb slender rods AB and BC are...Ch. 16.2 - Prob. 16.89PCh. 16.2 - Prob. 16.90PCh. 16.2 - Prob. 16.91PCh. 16.2 - Prob. 16.92PCh. 16.2 - Prob. 16.93PCh. 16.2 - Prob. 16.94PCh. 16.2 - A homogeneous sphere S, a uniform cylinder C, and...Ch. 16.2 - Prob. 16.96PCh. 16.2 - Prob. 16.97PCh. 16.2 - Prob. 16.98PCh. 16.2 - Prob. 16.99PCh. 16.2 - A drum of 80-mm radius is attached to a disk of...Ch. 16.2 - Prob. 16.101PCh. 16.2 - Prob. 16.102PCh. 16.2 - Prob. 16.103PCh. 16.2 - Prob. 16.104PCh. 16.2 - Prob. 16.105PCh. 16.2 - A 12-in.-radius cylinder of weight 16 lb rests on...Ch. 16.2 - A 12-in.-radius cylinder of weight 16 lb rests on...Ch. 16.2 - Gear C has a mass of 5 kg and a centroidal radius...Ch. 16.2 - Two uniform disks A and B, each with a mass of 2...Ch. 16.2 - Prob. 16.110PCh. 16.2 - Prob. 16.111PCh. 16.2 - Prob. 16.112PCh. 16.2 - Prob. 16.113PCh. 16.2 - A small clamp of mass mBis attached at B to a hoop...Ch. 16.2 - Prob. 16.115PCh. 16.2 - A 4-lb bar is attached to a 10-lb uniform cylinder...Ch. 16.2 - The uniform rod AB with a mass m and a length of...Ch. 16.2 - Prob. 16.118PCh. 16.2 - A 40-lb ladder rests against a wall when the...Ch. 16.2 - A beam AB of length L and mass m is supported by...Ch. 16.2 - End A of the 6-kg uniform rod AB rests on the...Ch. 16.2 - Prob. 16.122PCh. 16.2 - Prob. 16.123PCh. 16.2 - The 4-kg uniform rod ABD is attached to the crank...Ch. 16.2 - The 3-lb uniform rod BD is connected to crank AB...Ch. 16.2 - Prob. 16.126PCh. 16.2 - Prob. 16.127PCh. 16.2 - Prob. 16.128PCh. 16.2 - Prob. 16.129PCh. 16.2 - Prob. 16.130PCh. 16.2 - Prob. 16.131PCh. 16.2 - Prob. 16.132PCh. 16.2 - Prob. 16.133PCh. 16.2 - Prob. 16.134PCh. 16.2 - Prob. 16.135PCh. 16.2 - The 6-kg rod BC connects a 10-kg disk centered at...Ch. 16.2 - In the engine system shown, l=250 mm and b=100 mm....Ch. 16.2 - Solve Prob. 16.137 when =90 .Ch. 16.2 - The 4-lb uniform slender rod AB, the 8-lb uniform...Ch. 16.2 - Prob. 16.140PCh. 16.2 - Two rotating rods in the vertical plane are...Ch. 16.2 - Prob. 16.142PCh. 16.2 - Prob. 16.143PCh. 16.2 - Prob. 16.144PCh. 16.2 - Prob. 16.145PCh. 16.2 - Prob. 16.146PCh. 16.2 - Prob. 16.147PCh. 16.2 - Prob. 16.148PCh. 16.2 - Prob. 16.149PCh. 16.2 - Prob. 16.150PCh. 16.2 - (a) Determine the magnitude and the location of...Ch. 16.2 - Draw the shear and bending-moment diagrams for the...Ch. 16 - A cyclist is riding a bicycle at a speed of 20 mph...Ch. 16 - Prob. 16.154RPCh. 16 - The total mass of the Baja car and driver,...Ch. 16 - Prob. 16.156RPCh. 16 - Prob. 16.157RPCh. 16 - Prob. 16.158RPCh. 16 - A bar of mass m=5 kg is held as shown between four...Ch. 16 - A uniform plate of mass m is suspended in each of...Ch. 16 - Prob. 16.161RPCh. 16 - Two 3-kg uniform bars are connected to form the...Ch. 16 - Prob. 16.163RPCh. 16 - Prob. 16.164RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A 5.32-kg disk A of radius 0.445 m initially rotating counter-clockwise at 436 rev/min is engaged with a 6.72-kg disk B of radius 0.275 m initially rotating clockwise at 528 rev/min, where the moment of inertia of a disk is given as I = ½ mi?. Determine their combined angular speed (in rpm) and direction of rotation after the meshing of the two disks. Remember to show clearly the equations that you use!!'arrow_forward345 mm, and an initial angular velocity 2.1 kg, a radius rB = 215 mm, and Disk A has a mass mA = 5.1 kg, a radius rA wOA = 300 rpm clockwise. Disk B has a mass mB is at rest when it comes into contact with disk A. Given that uk = 0.37 between the disks and neglecting rolling friction, determine the acceleration angle of disk A, in rad/ s². @0 B - TB =arrow_forwardDisk A has a mass of 6 kg and an initial angular velocity of 360 rpm clockwise; disk B has a mass of 3 kg and is initially at rest. The disks are brought together by applying a horizontal force of magnitude 20 N to the axle of disk A. Knowing that µk = 0.15 between the disks and neglecting bearing friction, determine (a) the angular acceleration of each disk, (b) the final angular velocity of each disk.arrow_forward
- In the engine system shown l = 250 mm and b = 100 mm. The connecting rod BD is assumed to be a 1.2-kg uniform slender rod and is attached to the 1.8-kg piston P. During a test of the system, crank AB is made to rotate with a constant angular velocity of (400) rpm CW with no force applied to the face of the piston. Determine the velocity and acceleration of the piston P when θ = 90°. (Neglect the effect of the weight of the rod.)arrow_forwardIn the engine system shown l = 250 mm and b = 100 mm. The connecting rod BD is assumed to be a 1.2-kg uniform slender rod and is attached to the 1.8-kg piston P. During a test of the system, crank AB is made to rotate with a constant angular velocity of (400) rpm CW with no force applied to the face of the piston. Determine the velocity and acceleration of the piston P when θ = 90°. (Neglect the effect of the weight of the rod.)arrow_forwardTwo uniform cylinders, each of mass m = 6 kg and radius r = 125 mm, are connected by a belt as shown. If the system is released from rest when t = 0, determine (a ) the velocity of the center of cylinder B at t=3s, ( b) the tension in the portion of belt connecting the two cylinders.arrow_forward
- A disk with radius R and mass m begins from rest and then moves without slipping while being pulled horizontall by a force P acting at its center axle. Show that the velocity of the wheel after T seconds is v= 2PT/3m. (Hint: use both linear and angular-impulse principles.) m REG P ¹The radius of gyration has units of length and is related to the inertia by k = IG/m. It corresponds to the distance at which a mass equivalent to the mass of the rigid body would produce the same inertia as the actual rigid body. Recall that the inertia of a particle of mass m at a distance r from an axis of ortation is mr². Rather that using r the convention is to define the radus of gyration with the symbol k.arrow_forwardDisk A, of weight 10 lb and radius r = 6 in., is at rest when it is placed in contact with belt BC, which moves to the right with a constant speed v = 40 ft/s. Knowing that μk = 0.20 between the disk and the belt, determine the number of revolutions executed by the disk before it attains a constant angular velocity.arrow_forwardPlease answer nos. 2, 4, & 5.arrow_forward
- The space capsule has no angular velocity when the jet at A is activated for 1 s in a direction parallel to the axis. Knowing that the capsule has a mass of 1000 kg, that its radii of gyration are Kz=Ky =1.00m and Kz=1.25m A produces a thrust of 50 N, determine the axis of precession and the rates of precession and spin after the jet has stopped.arrow_forwardTwo uniform cylinders, each of mass m= 9.5 kg and radius r= 125 mm, are connected by a belt as shown. The system is released from rest when t = 0. B A Determine the velocity of the center of cylinder A at t = 4.4 s. The velocity of the center of cylinder A is 3 m/s ↓.arrow_forwardThe flywheel (I = mk² ) shown has a radius of 20 in. a weight of 250 lbs, and a radius of gyration of 15 in. A 30-lb block A is attached to a wire that is wrapped around the flywheel, and the system is released from rest. Neglecting the effect of friction, determine (a) the acceleration of block A and (b) the speed of block A after it has moved 5 ft. Use Newton's second law.(Answers: a = 5.66 ft/s v¼ = 7.52 ft/s |)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license