
Concept explainers
Gear A weighs 1 lb and has a radius of gyration of 1.3 in.; gear B weighs 6 lb and has a radius of gyration of 3 in.; gear C weighs 9 lb and has a radius of gyration of 4.3 in. Knowing a couple M of constant magnitude of 40 lb·in. is applied to gear A, determine (a) the angular acceleration of gear C, (b) the tangential force that gear B exerts on gear C.
Fig. P16.37
(a)

Find the angular acceleration of the gear C
Answer to Problem 16.37P
The angular acceleration of the gear C
Explanation of Solution
The weight of the gear A
The weight of the gear B
The weight of the gear C
The radius of gyration of the gear A
The radius of gyration of the gear B
The radius of gyration of the gear C
The couple of the constant magnitude applied to gear A (M) is
The radius of the gear A
The radius of the outer gear B
The radius of the inner gear B
The radius of the gear C
The angular acceleration of the gear A is
The angular acceleration of the gear B is
The angular acceleration of the gear C is
Calculation:
Consider the acceleration due to gravity (g) is
Convert the unit of the couple (M):
Convert the unit of the radius of the gear A
Convert the unit of the radius of the outer gear B
Convert the unit of the radius of the inner gear B
Convert the unit of the radius of the gear C
Calculate the mass of the gear A
Substitute
Calculate the mass of the gear B
Substitute
Calculate the mass of the gear C
Substitute
Calculate the mass moment of inertia of the gear A
Substitute
Calculate the mass moment of inertia of the gear B
Substitute
Calculate the mass moment of inertia of the gear C
Substitute
The point of contact between A and B:
Substitute
The point of contact between B and C:
Substitute
Therefore, the angular acceleration of the gear A is
Show the free body diagram of the gear A as in Figure 1.
Here,
Refer to Figure 1.
Calculate the moment about point A by applying the equation of equilibrium:
Substitute
Show the free body diagram of the gear B as in Figure 2.
Here,
Refer to Figure 2.
Calculate the moment about point B by applying the equation of equilibrium:
Substitute
Show the free body diagram of the gear C as in Figure 3.
Here,
Refer to Figure 3.
Calculate the moment about point C by applying the equation of equilibrium:
Calculate the angular acceleration of the gear C
Substitute
Hence, the angular acceleration of the gear C
(b)

Find the tangential force which gear B exerts on gear C.
Answer to Problem 16.37P
The tangential force which gear B exerts on gear C
Explanation of Solution
The weight of the gear A
The weight of the gear B
The weight of the gear C
The radius of gyration of the gear A
The radius of gyration of the gear B
The radius of gyration of the gear C
The couple of the constant magnitude applied to gear A (M) is
The radius of the gear A
The radius of the outer gear B
The radius of the inner gear B
The radius of the gear C
The angular acceleration of the gear A is
The angular acceleration of the gear B is
The angular acceleration of the gear C is
Calculation:
Refer the part (a).
Calculate the tangential force which gear B exerts on gear C
Substitute
Hence, the tangential force which gear B exerts on gear C
Want to see more full solutions like this?
Chapter 16 Solutions
VECTOR MECH...,STAT.+DYN.(LL)-W/ACCESS
Additional Engineering Textbook Solutions
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Mechanics of Materials (10th Edition)
Fluid Mechanics: Fundamentals and Applications
Problem Solving with C++ (10th Edition)
Database Concepts (8th Edition)
- Solve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forwarddraw the pneumatic circuit to operate a double-acting cylinder with: 1. Extension: Any of two manual conditions plus cylinder fully retracted, → Extension has both meter-in and meter-out, 2. Retraction: one manual conditions plus cylinder fully extended, → Retraction is very fast using quick exhaust valve.arrow_forward
- Correct answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you. Expert solution plsarrow_forwardCorrect answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you.arrow_forward
- Correct answer is written below. Detailed and complete solution only with fbd. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution only. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you.arrow_forward
- Correct answer is written below. Detailed and complete solution only. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution with fbd only. I will upvote, thank you.arrow_forwardCorrect answer is written below. Detailed and complete solution only. I will upvote, thank you.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





