
Concept explainers
Each of the double pulleys shown has a mass moment of inertia of 15 lb·ft·s2 and is initially at rest. The outside radius is 18 in., and the inner radius is 9 in. Determine (a) the angular acceleration of each pulley, (b) the angular velocity of each pulley after point A on the cord has moved 10 ft.
Fig. P16.34
(a)

Find the angular acceleration of the pulley 1
Find the angular acceleration of the pulley 2
Find the angular acceleration of the pulley 3
Find the angular acceleration of the pulley 4
Answer to Problem 16.34P
The angular acceleration of the pulley 1
The angular acceleration of the pulley 2
The angular acceleration of the pulley 3
The angular acceleration of the pulley 4
Explanation of Solution
The mass moment of inertia of the double pulleys
The outside radius of the pulley
The inner radius of the pulley
The finial angular velocity of the pulley
The load of the pulley 1
The load of the pulley 2
The left side load of the pulley 3
The right side load of the pulley 3
The load of the pulley 4
Calculation:
Consider the acceleration due to gravity (g) is
Case 1:
Convert the unit of the outside radius
Convert the unit of the inner radius
Show the free body diagram of the double pulley 1 as in Figure 1.
Here,
Refer to Figure 1.
Calculate the angular acceleration of the pulley 1
Calculate the moment about point O by applying the equation of equilibrium:
Hence, the angular acceleration of the pulley 1
Case 2:
Calculate the mass of the pulley 2
Substitute
Show the free body diagram of the double pulley 2 as in Figure 2.
Refer to Figure 2.
Calculate the moment about point O by applying the equation of equilibrium:
Calculate the angular acceleration of the pulley 2
Substitute
Hence, the angular acceleration of the pulley 2
Case 3:
Calculate the left side mass of the pulley 3
Substitute
Calculate the right side mass of the pulley 3
Substitute
Show the free body diagram of the double pulley 3 as in Figure 3.
Refer to Figure 3.
Calculate the moment about point O by applying the equation of equilibrium:
Calculate the angular acceleration of the pulley 3
Substitute
Hence, the angular acceleration of the pulley 3
Case 4:
Calculate the left side mass of the pulley 4
Substitute
Show the free body diagram of the double pulley 4 as in Figure 4.
Refer to Figure 4.
Calculate the moment about point O by applying the equation of equilibrium:
Calculate the angular acceleration of the pulley 4
Substitute
Hence, the angular acceleration of the pulley 4
(b)

Find the angular velocity of the pulley 1
Find the angular velocity of the pulley 2
Find the angular velocity of the pulley 3
Find the angular velocity of the pulley 4
Answer to Problem 16.34P
The angular velocity of the pulley 1
The angular velocity of the pulley 2
The angular velocity of the pulley 3
The angular velocity of the pulley 4
Explanation of Solution
The mass moment of inertia of the double pulleys
The outside radius of the pulley
The inner radius of the pulley
The finial angular velocity of the pulley
The load of the pulley 1
The load of the pulley 2
The left side load of the pulley 3
The right side load of the pulley 3
The load of the pulley 4
The moved distance of the point A (l) is
Calculation:
Refer part (a).
Case 1:
Calculate the angle of the pulley 1
Substitute
Calculate the angular velocity of the pulley 1
Substitute
Hence, the angular velocity of the pulley 1
Case 2:
Calculate the angle of the pulley 2
Substitute
Calculate the angular velocity of the pulley 2
Substitute
Hence, the angular velocity of the pulley 2
Case 3:
Calculate the angle of the pulley 3
Substitute
Calculate the angular velocity of the pulley 3
Substitute
Hence, the angular velocity of the pulley 3
Case 4:
Calculate the angle of the pulley 4
Substitute
Calculate the angular velocity of the pulley 4
Substitute
Hence, the angular velocity of the pulley 4
Want to see more full solutions like this?
Chapter 16 Solutions
VECTOR MECH...,STAT.+DYN.(LL)-W/ACCESS
Additional Engineering Textbook Solutions
Management Information Systems: Managing The Digital Firm (16th Edition)
Database Concepts (8th Edition)
Starting Out with Java: From Control Structures through Objects (7th Edition) (What's New in Computer Science)
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Electric Circuits. (11th Edition)
Fluid Mechanics: Fundamentals and Applications
- An aluminum rod of length L = 1m has mass density ρ = 2700 kgm3 andYoung’s modulus E = 70GPa. The rod is fixed at both ends. The exactnatural eigenfrequencies of the rod are ωexactn =πnLqEρfor n=1,2,3,. . . .1. What is the minimum number of linear elements necessary todetermine the fundamental frequency ω1 of the system? Discretizethe rod in that many elements of equal length, assemble the globalsystem of equations KU = ω2MU, and find the fundamentalfrequency ω1. Compute the relative error e1 = (ω1 − ωexact1)/ωexact1.Sketch the fundamental mode of vibration.arrow_forwardProblem 1 (65 pts, suggested time 50 mins). An elastic string of constant line tension1T is pinned at x = 0 and x = L. A constant distributed vertical force per unit length p(with units N/m) is applied to the string. Under this force, the string deflects by an amountv(x) from its undeformed (horizontal) state, as shown in the figure below.The PDE describing mechanical equilibrium for the string isddx Tdvdx− p = 0 . (1)(a) [5pts] Identify the BCs for the string and identify their type (essential/natural). Writedown the strong-form BVP for the string, including PDE and BCs.(b) [10pts] Find the analytical solution of the BVP in (a). Compute the exact deflectionof the midpoint v(L/2).(c) [15pts] Derive the weak-form BVP.(d) [5pts] What is the minimum number of linear elements necessary to compute the deflection of the midpoint?(e) [15pts] Write down the element stiffness matrix and the element force vector for eachelement.arrow_forwardProblem 1 (35 pts). An elastic string of constant line tension1 T is pinned at x = 0 andx = L. A constant distributed vertical force per unit length p (with units N/m) is appliedto the string. Under this force, the string deflects by an amount v(x) from its undeformed(horizontal) state, as shown in the figure below.Force equilibrium in the string requires thatdfdx − p = 0 , (1)where f(x) is the internal vertical force in the string, which is given byf = Tdvdx . (2)(a) [10pts] Write down the BVP (strong form) that the string deflection v(x) must satisfy.(b) [2pts] What order is the governing PDE in the BVP of (a)?(c) [3pts] Identify the type (essential/natural) of each boundary condition in (a).(d) [20pts] Find the analytical solution of the BVP in (a).arrow_forward
- Problem 2 (25 pts, (suggested time 15 mins). An elastic string of line tension T andmass per unit length µ is pinned at x = 0 and x = L. The string is free to vibrate, and itsfirst vibration mode is shown below.In order to find the frequency of the first mode (or fundamental frequency), the string isdiscretized into a certain number of linear elements. The stiffness and mass matrices of thei-th element are, respectivelyESMi =TLi1 −1−1 1 EMMi =Liµ62 11 2 . (2)(a) [5pts] What is the minimum number of linear elements necessary to compute the fundamental frequency of the vibrating string?(b) [20pts] Assemble the global eigenvalue problem and find the fundamental frequency ofvibration of the stringarrow_forwardI need part all parts please in detail (including f)arrow_forwardProblem 3 (10 pts, suggested time 5 mins). In class we considered the mutiphysics problem of thermal stresses in a rod. When using linear shape functions, we found that the stress in the rod is affected by unphysical oscillations like in the following plot E*(ux-a*T) 35000 30000 25000 20000 15000 10000 5000 -5000 -10000 0 Line Graph: E*(ux-a*T) MULT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Arc length (a) [10pts] What is the origin of this issue and how can we fix it?arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





