The pH of the solution which contains the salt sodium acetate is to be determined. Concept introduction: Salt is a strong electrolyte that dissociates completely when added to water. When a salt contains an anion that comes from a weak acid, the anion recombines with water to produce a weak acid and hydroxide ions, and forms a basic solution. The cation that comes from a strong base does not recombine and is present in the solution as a free ion without having any effect on the pH of the solution. The reaction of the salt ( BA ) which takes place is: A − ( a q ) + H 2 O ( l ) ⇌ HA ( a q ) + OH − ( a q ) Here, A − comes from the weak acid HA and B + comes from strong base BOH . The pH of this solution is determined by the [ OH − ] The relationship between K b , K a , and K w gives the quantitative basis of the reciprocal relationship between the strength of an acid and its conjugate base or vice-versa. K a × K b = K w …… (1) K b is the measure of dissociation of a base and is known as base-ionization constant that is specific at a particular temperature. K b = [ OH − ] [ HA ] [ A − ] …… (2) The formula to calculate the pOH of the solution from the concentration of hydroxide ions is: pOH = − log [ OH − ] …… (3) pH is the measure of acidity of a solution that depends on the concentration of hydronium ions and temperature of the solution. The relationship between pH and pOH is: pH + pOH = 14 …… (4)
The pH of the solution which contains the salt sodium acetate is to be determined. Concept introduction: Salt is a strong electrolyte that dissociates completely when added to water. When a salt contains an anion that comes from a weak acid, the anion recombines with water to produce a weak acid and hydroxide ions, and forms a basic solution. The cation that comes from a strong base does not recombine and is present in the solution as a free ion without having any effect on the pH of the solution. The reaction of the salt ( BA ) which takes place is: A − ( a q ) + H 2 O ( l ) ⇌ HA ( a q ) + OH − ( a q ) Here, A − comes from the weak acid HA and B + comes from strong base BOH . The pH of this solution is determined by the [ OH − ] The relationship between K b , K a , and K w gives the quantitative basis of the reciprocal relationship between the strength of an acid and its conjugate base or vice-versa. K a × K b = K w …… (1) K b is the measure of dissociation of a base and is known as base-ionization constant that is specific at a particular temperature. K b = [ OH − ] [ HA ] [ A − ] …… (2) The formula to calculate the pOH of the solution from the concentration of hydroxide ions is: pOH = − log [ OH − ] …… (3) pH is the measure of acidity of a solution that depends on the concentration of hydronium ions and temperature of the solution. The relationship between pH and pOH is: pH + pOH = 14 …… (4)
Solution Summary: The author explains that the pH of the solution which contains the salt sodium acetate is to be determined.
The pH of the solution which contains the salt sodium acetate is to be determined.
Concept introduction:
Salt is a strong electrolyte that dissociates completely when added to water.
When a salt contains an anion that comes from a weak acid, the anion recombines with water to produce a weak acid and hydroxide ions, and forms a basic solution. The cation that comes from a strong base does not recombine and is present in the solution as a free ion without having any effect on the pH of the solution.
The reaction of the salt (BA) which takes place is:
A−(aq)+H2O(l)⇌HA(aq)+OH−(aq)
Here, A− comes from the weak acid HA and B+ comes from strong base BOH. The pH of this solution is determined by the [OH−]
The relationship between Kb, Ka, and Kw gives the quantitative basis of the reciprocal relationship between the strength of an acid and its conjugate base or vice-versa.
Ka×Kb=Kw …… (1)
Kb is the measure of dissociation of a base and is known as base-ionization constant that is specific at a particular temperature.
Kb=[OH−][HA][A−] …… (2)
The formula to calculate the pOH of the solution from the concentration of hydroxide ions is:
pOH=−log[OH−] …… (3)
pH is the measure of acidity of a solution that depends on the concentration of hydronium ions and temperature of the solution. The relationship between pH and pOH is:
my ccc edu - Search
X
Quick Access
X
D2L Homepage - Spring 2025 x N Netflix
X
Dimensional Analysis - A x+
pp.aktiv.com
Q ☆
X
Question 59 of 70
The volume of
1
unit of plasma is 200.0 mL
If the recommended dosage
for adult patients is 10.0 mL per kg of body mass, how many units are needed for
a patient with a body mass of 80.0
kg ?
80.0
kg
10.0
DAL
1
units
X
X
4.00
units
1
1
Jeg
200.0
DAL
L
1 units
X
200.0 mL
= 4.00 units
ADD FACTOR
*( )
DELETE
ANSWER
RESET
D
200.0
2.00
1.60 × 10³
80.0
4.00
0.0400
0.250
10.0
8.00
&
mL
mL/kg
kg
units/mL
L
unit
Q Search
delete
prt sc
111
110
19
Identify the starting material in the following reaction. Click the "draw structure" button to launch the
drawing utility.
draw structure ...
[1] 0 3
C10H18
[2] CH3SCH3
H
In an equilibrium mixture of the formation of ammonia from nitrogen and hydrogen, it is found that
PNH3 = 0.147 atm, PN2 = 1.41 atm and Pн2 = 6.00 atm. Evaluate Kp and Kc at 500 °C.
2 NH3 (g) N2 (g) + 3 H₂ (g)
K₂ = (PN2)(PH2)³ = (1.41) (6.00)³ = 1.41 x 104
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.