Concept explainers
Using the information presented in the following table, identify the processing sequence that would result using (1) FCFS, (2) SPT, (3) EDD, and (4) CR. For each method, determine (1) average job flow time, (2) average job tardiness, and (3) average number of jobs in the system. Jobs are listed in order of arrival. (Hint: First determine the total job time for each job by computing the total processing time for the job and then adding in the setup time. All times and due dates are in hours.)
1)
To determine: Sequence of jobs based on decision rule First Come First Served (FCFS).
Introduction: First Come First Served is the scheduling rule, which helps to arrange the sequence in the order. Here, the first come would be served first.
Answer to Problem 7P
Explanation of Solution
Given information:
Job | Processing time per unit | Units per job | Setup time | Due date |
a | 0.14 | 45 | 0.7 | 4 |
b | 0.25 | 14 | 0.5 | 10 |
c | 0.1 | 18 | 0.2 | 12 |
d | 0.25 | 40 | 1 | 20 |
e | 0.1 | 75 | 0.5 | 15 |
Due date is given. Job time should be determined using the given processing time per unit, units per job, and setup time.
Example:
The procedure should be repeated for all the jobs. The resultant table is as follows:
Job | Job time (hours) | Due date (hours) |
a | 7 | 4 |
b | 4 | 10 |
c | 2 | 12 |
d | 11 | 20 |
e | 8 | 15 |
Determine the sequence using FCFS:
According to FCFS, the first come would be served first. Hence, the jobs should be sequenced in the order as per its arrival.
Hence, the sequence of jobs using FCFS is a-b-c-d-e.
Determine average flow time, average tardiness, and average number of jobs for FCFS:
Job | Processing time (hours) | Due date (hours) | Flow time | Tardiness |
a | 7 | 4 | 7 | 3 |
b | 4 | 10 | 11 | 1 |
c | 2 | 12 | 13 | 1 |
d | 11 | 20 | 24 | 4 |
e | 8 | 15 | 32 | 17 |
Total | 32 | 61 | 87 | 26 |
Average | 6.4 | 12.2 | 17.4 | 5.2 |
Supporting calculation:
Processing time and due date are given for each job. Flow time is the cumulative of the processing time.
Tardiness of Job a:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job b is 3.
Tardiness of Job b:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job b is 1.
Tardiness of Job c:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job c is 1.
Tardiness of Job d:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job d is 4.
Tardiness of Job e:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job e is 17.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 17.40 hours.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 5.20 hours.
Average number of jobs:
It can be determined by dividing the total flow time and total processing time.
Hence, average number of jobs is 2.72 jobs.
2)
To determine: Sequence of jobs based on decision rule Shortest Processing Time (SPT).
Introduction: Shortest Processing Tine is the scheduling rule, which helps to arrange the sequence in the order. Here, job with the shortest duration would be served first. Then, the process would be going on from shortest to largest duration.
Answer to Problem 7P
Explanation of Solution
Given information:
Job | Processing time per unit | Units per job | Setup time | Due date |
a | 0.14 | 45 | 0.7 | 4 |
b | 0.25 | 14 | 0.5 | 10 |
c | 0.1 | 18 | 0.2 | 12 |
d | 0.25 | 40 | 1 | 20 |
e | 0.1 | 75 | 0.5 | 15 |
Due date is given. Job time should be determined using the given processing time per unit, units per job, and setup time.
Example:
The procedure should be repeated for all the jobs. The resultant table is as follows:
Job | Job time (hours) | Due date (hours) |
a | 7 | 4 |
b | 4 | 10 |
c | 2 | 12 |
d | 11 | 20 |
e | 8 | 15 |
Determine the sequence using SPT:
According to SPT, the job that has the shortest processing would be served first and it goes on as the processing time increase. Duration should be assembled in the ascending order
Hence, the sequence of jobs using SPT is c-b-a-e-d.
Determine average flow time, average tardiness, and average number of jobs for SPT:
Job | Job time (hours) | Due date (hours) | Flow time | Tardiness |
c | 2 | 12 | 2 | 0 |
b | 4 | 10 | 6 | 0 |
a | 7 | 4 | 13 | 9 |
e | 8 | 15 | 21 | 6 |
d | 11 | 20 | 32 | 12 |
Total | 32 | 61 | 74 | 27 |
Average | 6.4 | 12.2 | 14.8 | 5.4 |
Supporting calculation:
Processing time and due date are given for each job. Flow time is the cumulative of the processing time.
Tardiness of Job c, and Job b:
Flow time of Job c and Job b is less than its respective due date. Hence, there would be no tardiness.
Tardiness of Job a:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job a is 9.
Tardiness of Job e:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job e is 6.
Tardiness of Job d:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job d is 12.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 14.80 hours.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 5.40 hours.
Average number of jobs:
It can be determined by dividing the total flow time and total processing time.
Hence, average number of jobs is 2.31 jobs.
3)
To determine: Sequence of jobs based on decision rule Earliest Due Date (EDD).
Introduction: Earliest Due Date is the scheduling rule, which helps to arrange the sequence in the order. Here, job with the earliest due date would be served first. Then, the process would be going on from earliest due date to latest due date.
Answer to Problem 7P
Explanation of Solution
Given information:
Job | Processing time per unit | Units per job | Setup time | Due date |
a | 0.14 | 45 | 0.7 | 4 |
b | 0.25 | 14 | 0.5 | 10 |
c | 0.1 | 18 | 0.2 | 12 |
d | 0.25 | 40 | 1 | 20 |
e | 0.1 | 75 | 0.5 | 15 |
Due date is given. Job time should be determined using the given processing time per unit, units per job, and setup time.
Example:
The procedure should be repeated for all the jobs. The resultant table is as follows:
Job | Job time (hours) | Due date (hours) |
a | 7 | 4 |
b | 4 | 10 |
c | 2 | 12 |
d | 11 | 20 |
e | 8 | 15 |
Determine the sequence using EDD:
According to EDD, the job that has the earliest due date would be served first and it goes on as the due date increases. The job should be arranged based on due date. Due date should be assembled in the ascending order
Hence, the sequence of jobs using EDD is a-b-c-e-d.
Determine average flow time, average tardiness, and average number of jobs for EDD:
Job | Job time (hours) | Due date (hours) | Flow time | Tardiness |
a | 7 | 4 | 7 | 3 |
b | 4 | 10 | 11 | 1 |
c | 2 | 12 | 13 | 1 |
e | 8 | 15 | 21 | 6 |
d | 11 | 20 | 32 | 12 |
Total | 32 | 61 | 84 | 23 |
Average | 6.4 | 12.2 | 16.8 | 4.6 |
Supporting calculation:
Processing time and due date are given for each job. Flow time is the cumulative of the processing time.
Tardiness of Job a:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job b is 3.
Tardiness of Job b:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job b is 1.
Tardiness of Job c:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job c is 1.
Tardiness of Job e:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job e is 6.
Tardiness of Job d:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job d is 12.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 16.80 hours.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 4.60 hours.
Average number of jobs:
It can be determined by dividing the total flow time and total processing time.
Hence, average number of jobs is 2.63 jobs.
4)
To determine: Sequence of jobs based on decision rule critical ratio.
Introduction: Critical ratio is kind of scheduling rule that helps to identify that, the task or job is on the correct track. It would help to identify if the task is behind or ahead of the schedule.
Answer to Problem 7P
Explanation of Solution
Given information:
Job | Processing time per unit | Units per job | Setup time | Due date |
a | 0.14 | 45 | 0.7 | 4 |
b | 0.25 | 14 | 0.5 | 10 |
c | 0.1 | 18 | 0.2 | 12 |
d | 0.25 | 40 | 1 | 20 |
e | 0.1 | 75 | 0.5 | 15 |
Due date is given. Job time should be determined using the given processing time per unit, units per job, and setup time.
Example:
The procedure should be repeated for all the jobs. The resultant table is as follows:
Job | Job time (hours) | Due date (hours) |
a | 7 | 4 |
b | 4 | 10 |
c | 2 | 12 |
d | 11 | 20 |
e | 8 | 15 |
Determine the sequence using critical ratio:
Initial critical ratio should be determined at day 0:
Job | Processing time (hours) | Due date | Critical ratio |
a | 7 | 4 | 0.57 |
b | 4 | 10 | 2.5 |
c | 2 | 12 | 6 |
d | 11 | 20 | 1.82 |
e | 8 | 15 | 1.88 |
Critical ratio for Job a:
It is can be determined by dividing the value attained by subtracting the completion day of previous job from the due date of current job with the processing time.
Note: Process continues for all the jobs.
Job a has the lowest critical ratio. Thus, it will be completed first. Hence, Job a would be completed first in the sequence of jobs.
Determine the critical ratio after the completion of Job a:
As the processing time of job a is 7 hours, completion day of completed day would be 7.
Job | Processing time (hours) | Due date | Critical ratio |
a | - | - | - |
b | 4 | 10 | 0.75 |
c | 2 | 12 | 2.5 |
d | 11 | 20 | 1.18 |
e | 8 | 15 | 1 |
Critical ratio for Job b:
It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.
Note: Process continues for all the jobs.
Job b has the lowest critical ratio. Hence, Job b would be completed next in the sequence of jobs.
Determine the critical ratio after the completion of Job a and Job b:
As the processing time of job a is 7 hours and Job b is 4, completion day of completed day would be 11 (7+4).
Job | Processing time (hours) | Due date | Critical ratio |
a | - | - | - |
b | - | - | - |
c | 2 | 12 | 0.5 |
d | 11 | 20 | 0.82 |
e | 8 | 15 | 0.5 |
Critical ratio for Job c:
It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.
Job c has the lowest critical ratio (break the tie arbitrarily). Hence, Job c would be completed next in the sequence of jobs after Job a and Job b.
Determine the critical ratio after the completion of Job a, Job b and Job c:
As the processing time of job a is 7 hours, Job b is 4, and Job c is 2 hours. completion day of completed day would be 13 (7+4+2).
Job | Processing time (hours) | Due date | Critical ratio |
a | - | - | - |
b | - | - | - |
c | - | - | - |
d | 11 | 20 | 0.82 |
e | 8 | 15 | 0.5 |
Critical ratio for Job d:
It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.
Job e has the lowest critical ratio. Hence, Job e would be completed next in the sequence of jobs after Job a, Job b, and Job c.
As Job d is the remaining job, it will be completed next.
Hence, the sequence of jobs using critical ratio is a-b-c-e-d.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 16.80 hours.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 4.60 hours.
Average number of jobs:
It can be determined by dividing the total flow time and total processing time.
Hence, average number of jobs is 2.63 jobs.
Want to see more full solutions like this?
Chapter 16 Solutions
Operations Management
- The average completion time (flow time) for the sequence developed using the FCFS rule = 11.75 days (round your response to two decimal places). The percentage utilization for the sequence developed using the FCFS rule = 42.55 % (enter your response as a percentage rounded to two decimal places). b) Using the SPT (shortest processing time) decision rule for sequencing the jobs, the order is (to resolve a tie, use the order in which the jobs were received): An Alabama lumberyard has four jobs on order, as shown in the following table. Today is day 205 on the yard's schedule. In what sequence would the jobs be ranked according to the decision rules on the left: Job Due Date A 212 B 209 C 208 D 210 Duration (days) 6 3 3 8 Sequence 1 Job B 2 3 4 A D The average tardiness (job lateness) for the sequence developed using the SPT rule = 5.00 days (round your response to two decimal places). The average completion time (flow time) for the sequence developed using the SPT rule = 10.25 days…arrow_forwardWith the aid of examples, fully discuss any five (5) political tactics used in organisations.arrow_forwarda. With the aid of examples, define discrimination. b. Fully discuss any four (4) types of discrimination in the workplacearrow_forward
- Read the Following Extract and Answer the Questions that Follows:The word politics has a somewhat negative connotation. It suggests that someone is attempting touse means or to gain ends that are not sanctioned by the organisation. Political behaviour, as we’vedefined it is quite neutral. Similarly, power is not inherently negative. Whether a person viewspower and politics as unsavoury topics depends on several considerations, most important perhapsbeing where the individual stands on a specific issue in each situation. Nonetheless, most managersare reluctant to admit to political character of their own work settings.Discuss any Five (5) Political tactics you know.arrow_forwardDescribe current features of Cigna Accredo pharmacy own appraisal forms and compare the system used against the textbook’s description of desirable features of appraisal forms. What improvements would you recommend and why?arrow_forwardProvide a recommendation of a combination of different methods of performance data that could be used to arrive at an overall score for each person being rated in cigna Accredo pharmacy. Explain the comprehensive system you have recommended and why you have chosen this combination of tools. Support your answer with research.arrow_forward
- Already got wrong answer Plz Don't use chatgptarrow_forwardThe RTY calculation for the following process steps would be: A ➡ ○ A.YA+YB+YC+YD OB. (YA)(YB)(YCYD) OC. ((YA+YB+YC+YD)/4)*4 ○ D. (1/YA)+(1/YB)+(1/YC)+YD B C Darrow_forwardCan you guys help me with this? 1. What did you learn about the case, the concepts of transformational leadership; transactional leadership; Herzberg's Two Factors; Maslow's Hierarchy of needs theories that been applied through the case? Here is the case: Theranos (2003-2018):Overview: Theranos promised to revolutionize blood testing but was exposed formisleading claims about its technology, leading to its collapse 2. What did you learn about the case between Elon Musk and Twitter, the concepts of transformational leadership; transactional leadership; Herzberg's Two Factors Theory; Maslow's Hierarchy of needs theories that been applied through the case? 3. What did you learn about the case of Blockbuster's decline and their failure to adapt with digital streaming, the concepts of autocratic leadership; transactional leadership; Herzberg's Two Factors; Maslow's Hierarchy of needs theories that been applied through the case?arrow_forward
- Can you guys help me with this? 1. What did you learn about the case, the concepts of transformational leadership; transactional leadership; Herzberg's Two Factors; and Maslow's Hierarchy of needs theories that have been applied through the case? Here is the case: The COVID-19 Pandemic Response (2020-Present): Overview: Global leaders had to navigate an unprecedented health crisis, balancingpublic health needs with economic pressures. 2. What did you learn about the case, the concepts of transformational leadership; transactional leadership; Herzberg's Two Factors Theory; and Maslow's Hierarchy of Needs theories that have been applied through the case? Here's the case: Google Glass (2013):Overview: Google launched its augmented reality glasses with high expectations, butprivacy concerns and limited functionality led to poor adoption 3. What did you learn about the case of Kodak's failure to keep up with digital photography, the concepts of autocratic leadership; transformational…arrow_forwardWith the above information do the following:1. Based on the From-To chart presented develop an ActivityRelationship Chart for this operation.2. Develop a Space-Relationship Diagram for this operation.3. Evaluate the actual layout using the “Distance Traveled byProduct” technique discussed in class (use rectilinear distance inall calculations).4. Develop two layout improvement alternatives.5. Evaluate alternatives using the “Distance Traveled by Product”technique discussed in class (use rectilinear distance in allcalculations).6. Make a layout recommendation based on alternatives evaluatedarrow_forwardProvide at least two examples of layouts strategies for the table attached. We provided an example for office. Office Retail Warehouse (storage) Project (fixed position) Job shop (process oriented) Work cell (product families) Repetitive/Continuous (product oriented)arrow_forward
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,