Operations Management
Operations Management
13th Edition
ISBN: 9781259667473
Author: William J Stevenson
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 16, Problem 7P

Using the information presented in the following table, identify the processing sequence that would result using (1) FCFS, (2) SPT, (3) EDD, and (4) CR. For each method, determine (1) average job flow time, (2) average job tardiness, and (3) average number of jobs in the system. Jobs are listed in order of arrival. (Hint: First determine the total job time for each job by computing the total processing time for the job and then adding in the setup time. All times and due dates are in hours.)

Chapter 16, Problem 7P, Using the information presented in the following table, identify the processing sequence that would

1)

Expert Solution
Check Mark
Summary Introduction

To determine: Sequence of jobs based on decision rule First Come First Served (FCFS).

Introduction: First Come First Served is the scheduling rule, which helps to arrange the sequence in the order. Here, the first come would be served first.

Answer to Problem 7P

The sequence is a-b-c-d-e.

Explanation of Solution

Given information:

Job Processing time per unit Units per job Setup time Due date
a 0.14 45 0.7 4
b 0.25 14 0.5 10
c 0.1 18 0.2 12
d 0.25 40 1 20
e 0.1 75 0.5 15

Due date is given. Job time should be determined using the given processing time per unit, units per job, and setup time.

Example:

Job time=(Processing time×Units per jobs)+Setup time=(0.14×45)+0.7=7 hours

The procedure should be repeated for all the jobs. The resultant table is as follows:

Job Job time (hours) Due date (hours)
a 7 4
b 4 10
c 2 12
d 11 20
e 8 15

Determine the sequence using FCFS:

According to FCFS, the first come would be served first. Hence, the jobs should be sequenced in the order as per its arrival.

Hence, the sequence of jobs using FCFS is a-b-c-d-e.

Determine average flow time, average tardiness, and average number of jobs for FCFS:

Job Processing time (hours) Due date (hours) Flow time Tardiness
a 7 4 7 3
b 4 10 11 1
c 2 12 13 1
d 11 20 24 4
e 8 15 32 17
Total 32 61 87 26
Average 6.4 12.2 17.4 5.2

Supporting calculation:

Processing time and due date are given for each job. Flow time is the cumulative of the processing time.

Tardiness of Job a:

It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job b is 3.

Tardiness=Flow timeDue date=74=3

Tardiness of Job b:

It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job b is 1.

Tardiness=Flow timeDue date=1110=1

Tardiness of Job c:

It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job c is 1.

Tardiness=Flow timeDue date=1312=1

Tardiness of Job d:

It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job d is 4.

Tardiness=Flow timeDue date=2420=4

Tardiness of Job e:

It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job e is 17.

Tardiness=Flow timeDue date=3215=17

Average flow time:

It is calculated by dividing the total flow time and number of jobs.

Average flow time=Total flow timeNumber of jobs=875=17.40 hours

Hence, average flow time is 17.40 hours.

Average tardiness:

It is calculated by dividing the total tardiness and number of jobs.

Average tardiness=Total tardinessNumber of jobs=265=5.20 hours

Hence, average tardiness is 5.20 hours.

Average number of jobs:

It can be determined by dividing the total flow time and total processing time.

Average number of jobs=Total flow timeTotal processing time=8732=2.72 jobs

Hence, average number of jobs is 2.72 jobs.

2)

Expert Solution
Check Mark
Summary Introduction

To determine: Sequence of jobs based on decision rule Shortest Processing Time (SPT).

Introduction: Shortest Processing Tine is the scheduling rule, which helps to arrange the sequence in the order. Here, job with the shortest duration would be served first. Then, the process would be going on from shortest to largest duration.

Answer to Problem 7P

The sequence is c-b-a-e-d.

Explanation of Solution

Given information:

Job Processing time per unit Units per job Setup time Due date
a 0.14 45 0.7 4
b 0.25 14 0.5 10
c 0.1 18 0.2 12
d 0.25 40 1 20
e 0.1 75 0.5 15

Due date is given. Job time should be determined using the given processing time per unit, units per job, and setup time.

Example:

Job time=(Processing time×Units per jobs)+Setup time=(0.14×45)+0.7=7 hours

The procedure should be repeated for all the jobs. The resultant table is as follows:

Job Job time (hours) Due date (hours)
a 7 4
b 4 10
c 2 12
d 11 20
e 8 15

Determine the sequence using SPT:

According to SPT, the job that has the shortest processing would be served first and it goes on as the processing time increase. Duration should be assembled in the ascending order

Hence, the sequence of jobs using SPT is c-b-a-e-d.

Determine average flow time, average tardiness, and average number of jobs for SPT:

Job Job time (hours) Due date (hours) Flow time Tardiness
c 2 12 2 0
b 4 10 6 0
a 7 4 13 9
e 8 15 21 6
d 11 20 32 12
Total 32 61 74 27
Average 6.4 12.2 14.8 5.4

Supporting calculation:

Processing time and due date are given for each job. Flow time is the cumulative of the processing time.

Tardiness of Job c, and Job b:

Flow time of Job c and Job b is less than its respective due date. Hence, there would be no tardiness.

Tardiness of Job a:

It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job a is 9.

Tardiness=Flow timeDue date=134=9

Tardiness of Job e:

It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job e is 6.

Tardiness=Flow timeDue date=2115=6

Tardiness of Job d:

It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job d is 12.

Tardiness=Flow timeDue date=3220=12

Average flow time:

It is calculated by dividing the total flow time and number of jobs.

Average flow time=Total flow timeNumber of jobs=745=14.80 hours

Hence, average flow time is 14.80 hours.

Average tardiness:

It is calculated by dividing the total tardiness and number of jobs.

Average tardiness=Total tardinessNumber of jobs=275=5.40 hours

Hence, average tardiness is 5.40 hours.

Average number of jobs:

It can be determined by dividing the total flow time and total processing time.

Average number of jobs=Total flow timeTotal processing time=7432=2.31 jobs

Hence, average number of jobs is 2.31 jobs.

3)

Expert Solution
Check Mark
Summary Introduction

To determine: Sequence of jobs based on decision rule Earliest Due Date (EDD).

Introduction: Earliest Due Date is the scheduling rule, which helps to arrange the sequence in the order. Here, job with the earliest due date would be served first. Then, the process would be going on from earliest due date to latest due date.

Answer to Problem 7P

The sequence is a-b-c-e-d.

Explanation of Solution

Given information:

Job Processing time per unit Units per job Setup time Due date
a 0.14 45 0.7 4
b 0.25 14 0.5 10
c 0.1 18 0.2 12
d 0.25 40 1 20
e 0.1 75 0.5 15

Due date is given. Job time should be determined using the given processing time per unit, units per job, and setup time.

Example:

Job time=(Processing time×Units per jobs)+Setup time=(0.14×45)+0.7=7 hours

The procedure should be repeated for all the jobs. The resultant table is as follows:

Job Job time (hours) Due date (hours)
a 7 4
b 4 10
c 2 12
d 11 20
e 8 15

Determine the sequence using EDD:

According to EDD, the job that has the earliest due date would be served first and it goes on as the due date increases. The job should be arranged based on due date. Due date should be assembled in the ascending order

Hence, the sequence of jobs using EDD is a-b-c-e-d.

Determine average flow time, average tardiness, and average number of jobs for EDD:

Job Job time (hours) Due date (hours) Flow time Tardiness
a 7 4 7 3
b 4 10 11 1
c 2 12 13 1
e 8 15 21 6
d 11 20 32 12
Total 32 61 84 23
Average 6.4 12.2 16.8 4.6

Supporting calculation:

Processing time and due date are given for each job. Flow time is the cumulative of the processing time.

Tardiness of Job a:

It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job b is 3.

Tardiness=Flow timeDue date=74=3

Tardiness of Job b:

It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job b is 1.

Tardiness=Flow timeDue date=1110=1

Tardiness of Job c:

It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job c is 1.

Tardiness=Flow timeDue date=1312=1

Tardiness of Job e:

It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job e is 6.

Tardiness=Flow timeDue date=2115=6

Tardiness of Job d:

It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job d is 12.

Tardiness=Flow timeDue date=3220=12

Average flow time:

It is calculated by dividing the total flow time and number of jobs.

Average flow time=Total flow timeNumber of jobs=845=16.80 hours

Hence, average flow time is 16.80 hours.

Average tardiness:

It is calculated by dividing the total tardiness and number of jobs.

Average tardiness=Total tardinessNumber of jobs=235=4.60 hours

Hence, average tardiness is 4.60 hours.

Average number of jobs:

It can be determined by dividing the total flow time and total processing time.

Average number of jobs=Total flow timeTotal processing time=8432=2.63 jobs

Hence, average number of jobs is 2.63 jobs.

4)

Expert Solution
Check Mark
Summary Introduction

To determine: Sequence of jobs based on decision rule critical ratio.

Introduction: Critical ratio is kind of scheduling rule that helps to identify that, the task or job is on the correct track. It would help to identify if the task is behind or ahead of the schedule.

Answer to Problem 7P

The sequence is a-b-c-e-d.

Explanation of Solution

Given information:

Job Processing time per unit Units per job Setup time Due date
a 0.14 45 0.7 4
b 0.25 14 0.5 10
c 0.1 18 0.2 12
d 0.25 40 1 20
e 0.1 75 0.5 15

Due date is given. Job time should be determined using the given processing time per unit, units per job, and setup time.

Example:

Job time=(Processing time×Units per jobs)+Setup time=(0.14×45)+0.7=7 hours

The procedure should be repeated for all the jobs. The resultant table is as follows:

Job Job time (hours) Due date (hours)
a 7 4
b 4 10
c 2 12
d 11 20
e 8 15

Determine the sequence using critical ratio:

Initial critical ratio should be determined at day 0:

Job Processing time (hours) Due date Critical ratio
a 7 4 0.57
b 4 10 2.5
c 2 12 6
d 11 20 1.82
e 8 15 1.88

Critical ratio for Job a:

It is can be determined by dividing the value attained by subtracting the completion day of previous job from the due date of current job with the processing time.

Critical ratio=Due dateCompletion day of completed jobProcessing time=407=0.57

Note: Process continues for all the jobs.

Job a has the lowest critical ratio. Thus, it will be completed first. Hence, Job a would be completed first in the sequence of jobs.

Determine the critical ratio after the completion of Job a:

As the processing time of job a is 7 hours, completion day of completed day would be 7.

Job Processing time (hours) Due date Critical ratio
a - - -
b 4 10 0.75
c 2 12 2.5
d 11 20 1.18
e 8 15 1

Critical ratio for Job b:

It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.

Critical ratio=Due dateCompletion day of completed jobProcessing time=1074=0.75

Note: Process continues for all the jobs.

Job b has the lowest critical ratio. Hence, Job b would be completed next in the sequence of jobs.

Determine the critical ratio after the completion of Job a and Job b:

As the processing time of job a is 7 hours and Job b is 4, completion day of completed day would be 11 (7+4).

Job Processing time (hours) Due date Critical ratio
a - - -
b - - -
c 2 12 0.5
d 11 20 0.82
e 8 15 0.5

Critical ratio for Job c:

It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.

Critical ratio=Due dateCompletion day of completed jobProcessing time=12112=0.50

Job c has the lowest critical ratio (break the tie arbitrarily). Hence, Job c would be completed next in the sequence of jobs after Job a and Job b.

Determine the critical ratio after the completion of Job a, Job b and Job c:

As the processing time of job a is 7 hours, Job b is 4, and Job c is 2 hours. completion day of completed day would be 13 (7+4+2).

Job Processing time (hours) Due date Critical ratio
a - - -
b - - -
c - - -
d 11 20 0.82
e 8 15 0.5

Critical ratio for Job d:

It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.

Critical ratio=Due dateCompletion day of completed jobProcessing time=201311=0.64

Job e has the lowest critical ratio. Hence, Job e would be completed next in the sequence of jobs after Job a, Job b, and Job c.

As Job d is the remaining job, it will be completed next.

Hence, the sequence of jobs using critical ratio is a-b-c-e-d.

Average flow time:

It is calculated by dividing the total flow time and number of jobs.

Average flow time=Total flow timeNumber of jobs=845=16.80 hours

Hence, average flow time is 16.80 hours.

Average tardiness:

It is calculated by dividing the total tardiness and number of jobs.

Average tardiness=Total tardinessNumber of jobs=235=4.60 hours

Hence, average tardiness is 4.60 hours.

Average number of jobs:

It can be determined by dividing the total flow time and total processing time.

Average number of jobs=Total flow timeTotal processing time=8432=2.63 jobs

Hence, average number of jobs is 2.63 jobs.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Using the information presented in the following table, identify the processing sequence that wouldresult using (1) FCFS, (2) SPT, (3) EDD, and (4) CR. For each method, determine (1) average jobflow time, (2) average job tardiness, and (3) average number of jobs in the system. Jobs are listedin order of arrival. (Hint: First determine the total job time for each job by computing the total processing time for the job and then adding in the setup time. All times and due dates are in hours.)JobProcessingTime per UnitUnitsper JobSetupTimeDueDatea .14 45 0.7 4b .25 14 0.5 10c .10 18 0.2 12d .25 40 1.0 20e .10 75 0.5 15
Given the following information on job times and due dates, determine the optimal processingsequence using (1) FCFS, (2) SPT, (3) EDD, and (4) CR. For each method, find the average jobflow time and the average job tardiness. Jobs are listed in order of arrival.JobJob Time(hours)Due Date(hours)a 3.5 7b 2.0 6c 4.5 18d 5.0 22e 2.5 4f 6.0 20
Processing time for eight projects, displayed in the sequence they arrived. Project P1 P2 P3 P4 P5 P6 P7 P8 Processing time (hours) 3 1 1 2 9 6 1 1.50 2. Given the projects displayed in table above, if FCFS is used to sequence the jobs, what is the average flow rate of the projects? Note: Round your answer to 2 decimal places.   3. Given the projects displayed in table above, if FCFS is used to sequence the jobs, what is the average flow time of the projects? Note: Round your answer to 1 decimal place.   4. Given the projects displayed in table above, if FCFS is used to sequence the jobs, what is the average inventory of the projects? Note: Use your rounded answers from Parts 2 and 3. Round your answer to 1 decimal place.   5. Given the projects displayed in table above, if SPT is used to sequence the jobs, what is the average flow rate of the projects? Note: Round your answer to 2 decimal places.   6. Given the projects displayed in table above, if SPT is used to sequence…

Chapter 16 Solutions

Operations Management

Ch. 16 - Prob. 11DRQCh. 16 - What general trade-offs are involved in sequencing...Ch. 16 - Prob. 2TSCh. 16 - Prob. 3TSCh. 16 - One approach that can be effective in reducing the...Ch. 16 - Doctors and dentists offices frequently schedule...Ch. 16 - Prob. 3CTECh. 16 - Use the assignment method to determine the best...Ch. 16 - Rework Problem 1, treating the numbers in the...Ch. 16 - Assign trucks to delivery routes so that total...Ch. 16 - Develop an assignment plan that will minimize...Ch. 16 - Use the assignment method to obtain a plan that...Ch. 16 - The following table contains information...Ch. 16 - Using the information presented in the following...Ch. 16 - The following table shows orders to be processed...Ch. 16 - A wholesale grocery distribution center uses a...Ch. 16 - The times required to complete each of eight jobs...Ch. 16 - Prob. 11PCh. 16 - A shoe repair operation uses a two-step sequence...Ch. 16 - The following schedule was prepared by the...Ch. 16 - The production manager must determine the...Ch. 16 - A foreman has determined processing times at a...Ch. 16 - Given the information in the following table,...Ch. 16 - Given the following information on job times and...Ch. 16 - Prob. 18PCh. 16 - The following table contains order-dependent setup...Ch. 16 - The following table contains order-dependent setup...Ch. 16 - Prob. 21PCh. 16 - Given this information on planned and actual...Ch. 16 - Given the following data on inputs and outputs at...Ch. 16 - Determine the minimum number of workers needed,...Ch. 16 - Determine the minimum number of workers needed,...Ch. 16 - Determine the minimum number of workers needed,...Ch. 16 - Prob. 1CQ
Knowledge Booster
Background pattern image
Operations Management
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Inventory Management | Concepts, Examples and Solved Problems; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=2n9NLZTIlz8;License: Standard YouTube License, CC-BY