
Concept explainers
Given the following information on job times and due dates, determine the optimal processing sequence using (1) FCFS, (2) SPT, (3) EDD, and (4) CR. For each method, find the average job flow time and the average job tardiness. Jobs are listed in order of arrival.
1)

To determine: Sequence of jobs based on decision rule First Come First Served (FCFS).
Introduction: First Come First Served is the scheduling rule, which helps to arrange the sequence in the order. Here, the first come would be served first.
Answer to Problem 17P
Explanation of Solution
Given information:
Job | Job time (hours) | Due date (hours) |
a | 3.5 | 7 |
b | 2.0 | 6 |
c | 4.5 | 18 |
d | 5.0 | 22 |
e | 2.5 | 4 |
f | 6.0 | 20 |
Determine the sequence using FCFS:
According to FCFS, the first come would be served first. Hence, the jobs should be sequenced in the order as per its arrival.
Hence, the sequence of jobs using FCFS is a-b-c-d-e.
2)

To determine: Sequence of jobs based on decision rule Shortest Processing Time (SPT).
Introduction: Shortest Processing Tine is the scheduling rule, which helps to arrange the sequence in the order. Here, job with the shortest duration would be served first. Then, the process would be going on from shortest to largest duration.
Answer to Problem 17P
Explanation of Solution
Given information:
Job | Job time (hours) | Due date (hours) |
a | 3.5 | 7 |
b | 2.0 | 6 |
c | 4.5 | 18 |
d | 5.0 | 22 |
e | 2.5 | 4 |
f | 6.0 | 20 |
Determine the sequence using SPT:
According to SPT, the job that has the shortest processing would be served first and it goes on as the processing time increase. Duration should be assembled in the ascending order
Hence, the sequence of jobs using SPT is b-e-a-c-d-f.
3)

To determine: Sequence of jobs based on decision rule Earliest Due Date (EDD).
Introduction: Earliest Due Date is the scheduling rule, which helps to arrange the sequence in the order. Here, job with the earliest due date would be served first. Then, the process would be going on from earliest due date to latest due date.
Answer to Problem 17P
Explanation of Solution
Given information:
Job | Job time (hours) | Due date (hours) |
a | 3.5 | 7 |
b | 2.0 | 6 |
c | 4.5 | 18 |
d | 5.0 | 22 |
e | 2.5 | 4 |
f | 6.0 | 20 |
Determine the sequence using EDD:
According to EDD, the job that has the earliest due date would be served first and it goes on as the due date increases. The job should be arranged based on due date. Due date should be assembled in the ascending order
Hence, the sequence of jobs using EDD is e-b-a-c-f-d.
4)

To determine: Sequence of jobs based on decision rule critical ratio.
Introduction: Critical ratio is kind of scheduling rule that helps to identify that, the task or job is on the correct track. It would help to identify if the task is behind or ahead of the schedule.
Answer to Problem 17P
Explanation of Solution
Given information:
Job | Job time (hours) | Due date (hours) |
a | 3.5 | 7 |
b | 2.0 | 6 |
c | 4.5 | 18 |
d | 5.0 | 22 |
e | 2.5 | 4 |
f | 6.0 | 20 |
Determine the sequence using critical ratio:
Initial critical ratio should be determined at day 0:
Job | Job time (hours) | Due date (hours) | Critical ratio |
a | 3.5 | 7 | 2. |
b | 2.0 | 6 | 3 |
c | 4.5 | 18 | 4 |
d | 5.0 | 22 | 4.4 |
e | 2.5 | 4 | 1.6 |
f | 6.0 | 20 | 3.33 |
Critical ratio for Job a:
It is can be determined by dividing the value attained by subtracting the completion day of previous job from the due date of current job with the processing time.
Note: The procedure continues for all the jobs.
Job e has the lowest critical ratio. Thus, it will be completed first. Hence, Job e would be completed first in the sequence of jobs.
Determine the critical ratio after the completion of Job a:
As the processing time of job a is 2.5 hours, completion day of completed day would be 2.5.
Job | Job time (hours) | Due date (hours) | Critical ratio |
a | 3.5 | 7 | 1.29 |
b | 2.0 | 6 | 1.75 |
c | 4.5 | 18 | 3.44 |
d | 5.0 | 22 | 3.90 |
e | |||
f | 6.0 | 20 | 2.90 |
Critical ratio for Job a:
It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.
Note: The procedure continues for all the jobs.
Job a has the lowest critical ratio. Hence, Job a would be completed next in the sequence of jobs after Job e.
Determine the critical ratio after the completion of Job e and Job a:
As the processing time of job e is 2.5 hours and Job a is 3.5, completion day of completed day would be 6 (2.5+3.5).
Job | Job time (hours) | Due date (hours) | Critical ratio |
a | |||
b | 2.0 | 6 | 0 |
c | 4.5 | 18 | 2.67 |
d | 5.0 | 22 | 3.20 |
f | 6.0 | 20 | 2.33 |
Critical ratio for Job b:
It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.
Note: The procedure continues for all the jobs.
Job b has the lowest critical ratio. Hence, Job b would be completed next in the sequence of jobs after Job e and Job a.
Determine the critical ratio after the completion of Job e, Job a, and Job b:
As the processing time of job e is 2.5 hours, Job a is 3.5, and Job b is 2. Completion day of completed day would be 8 (2.5+3.5+2).
Job | Job time (hours) | Due date (hours) | Critical ratio |
a | |||
b | |||
c | 4.5 | 18 | 2.22 |
d | 5.0 | 22 | 2.80 |
f | 6.0 | 20 | 2.00 |
Critical ratio for Job c:
It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.
Note: The procedure continues for all the jobs.
Job f has the lowest critical ratio. Hence, Job f would be completed next in the sequence of jobs.
Determine the critical ratio after the completion of Job e, Job a, Job b, and Job f:
As the processing time of job e is 2.5 hours, Job a is 3.5, Job b is 2, and Job f is 6.0. Completion day of completed day would be 14 (2.5+3.5+2+6).
Job | Job time (hours) | Due date (hours) | Critical ratio |
a | |||
b | |||
c | 4.5 | 18 | 2.22 |
d | 5.0 | 22 | 2.80 |
f |
Critical ratio for Job c:
It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.
Note: The procedure continues for all the jobs.
Job c has the lowest critical ratio. Hence, Job c would be completed next in the sequence of jobs.
As Job d is the remaining job, it will be completed next.
Hence, the sequence of jobs using critical ratio is e-a-b-f-c-d.
Determine the average flow time and average tardiness:
First Come First Served:
Job | Job time (hours) | Due date (hours) | Flow time | Tardiness |
a | 3.5 | 7 | 3.5 | |
b | 2.0 | 6 | 5.5 | |
c | 4.5 | 18 | 10.0 | |
d | 5.0 | 22 | 15.0 | |
e | 2.5 | 4 | 17.5 | 13.5 |
f | 6.0 | 20 | 23.5 | 3.5 |
Total | 23.5 | 75.0 | 17.0 |
Supporting calculation:
Processing time and due date are given for each job. Flow time is the cumulative of the processing time.
Tardiness of Job a, Job, b, Job c, and Job d:
Flow time of Job a, Job b, Job c, and Job d is less than its respective due date. Hence, there would be no tardiness.
Tardiness of Job e:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job e is 13.5.
Tardiness of Job f:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job f is 3.5.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 12.5 hours.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 2.83 hours
Shortest processing time:
Job | Job time (hours) | Due date (hours) | Flow time | Tardiness |
b | 2.0 | 6 | 2.0 | |
e | 2.5 | 4 | 4.5 | 0.5 |
a | 3.5 | 7 | 8.0 | 1.0 |
c | 4.5 | 18 | 12.5 | |
d | 5.0 | 22 | 17.5 | |
f | 6.0 | 20 | 23.5 | 3.5 |
Total | 23.5 | 68.0 | 5.0 |
Supporting calculation:
Processing time and due date are given for each job. Flow time is the cumulative of the processing time.
Tardiness of Job b, Job c, and Job d:
Flow time of Job b, Job c, and Job d is less than its respective due date. Hence, there would be no tardiness.
Tardiness of Job e:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job e is 0.5.
Tardiness of Job a:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job a is 1.
Tardiness of Job f:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job f is 3.5.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 11.33 hours.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 0.83 hours
Earliest Due Date:
Job | Job time (hours) | Due date (hours) | Flow time | Tardiness |
e | 2.5 | 4 | 2.5 | |
b | 2.0 | 6 | 4.5 | |
a | 3.5 | 7 | 8.0 | 1.0 |
c | 4.5 | 18 | 12.5 | |
f | 6.0 | 20 | 18.5 | |
d | 5.0 | 22 | 23.5 | 1.5 |
Total | 23.5 | 69.5 | 2.5 |
Supporting calculation:
Processing time and due date are given for each job. Flow time is the cumulative of the processing time.
Tardiness of Job e, Job b, Job c, and Job f:
Flow time of Job e, Job b, Job c, and Job f is less than its respective due date. Hence, there would be no tardiness.
Tardiness of Job a:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job a is 1.
Tardiness of Job d:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job d is 1.5.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 11.58 hours.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 0.42 hours
Critical ratio:
Job | Job time (hours) | Due date (hours) | Flow time | Tardiness |
e | 2.5 | 4 | 2.5 | |
a | 3.5 | 7 | 6.0 | |
b | 2.0 | 6 | 8.0 | 2.0 |
f | 6.0 | 20 | 14.0 | |
c | 4.5 | 18 | 18.5 | 0.5 |
d | 5.0 | 22 | 23.5 | 1.5 |
Total | 23.5 | 72.5 | 4.0 |
Supporting calculation:
Processing time and due date are given for each job. Flow time is the cumulative of the processing time.
Tardiness of Job e, Job a, and Job f:
Flow time of Job e, Job a, and Job f is less than its respective due date. Hence, there would be no tardiness.
Tardiness of Job b:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job b is 2.
Tardiness of Job c:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job c is 0.5.
Tardiness of Job d:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job d is 1.5.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 12.08 hours.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 0.67 hours.
Want to see more full solutions like this?
Chapter 16 Solutions
Operations Management
- As part of your new role, as a strategy consultant and member of the steering committee, discuss what logistics and transportation strategies you will execute to achieve operational efficiencies and facilitate economic growth in SA. The committee would like to have a implementable strategic transport and logistics plan to realise the roadmap vision based on the subsection numbering given below: QUESTION ONE Marks 5 Introduction: Must include an overview and history of South Africa's Road, rail and freight transport network. 1.1 Assess what led to such logistical inefficiencies/collapse of a previously world class freight network 10 1.2 What are the current freight and logistic challenges on the road network 10 1.3 Discuss key relevant financials of infrastructure, industries and revenue resulting in this logistics crisis. 15 1.4 Discuss how the key stakeholder partnerships - current and future are critical to government and business as part of the overall intermodal transport strategy.…arrow_forwardWhat are the current freight and logistic challenges on the road network Discuss key relevant financials of infrastructure, industries and revenue resulting in this logistics crisis. 10 15arrow_forward1.5 If you examine the freight supply and value chain, what transport and infrastructure strategies and 25 plans need to be implemented to improve operation efficiencies and reduce costs. 5 1.6 15 Discuss how implementation of a strategic intermodal transport plan can further unlock and improve South Africa's GDP and international recognition.arrow_forward
- A certain business process is no longer providing the desired benefits, therefore it needs to be re-designed through a project. You have to: Choose the business process to re-design and specify the reason why it is no longer satisfactory. Ask ChatGPT (or a similar generative AI; specify name and version) to create a Project Charter for the process redesign project. Modify and refine the response provided by the AI tool ensuring it complies with the instructor’s lesson, with particular focus on the project goals, project objectives, and deliverables (remember: project objectives must be SMART!). Your work must be delivered in the following format: a)Describe the business process to re-design (example: “The process of hiring and integrating new employees into the Sales Administration department”. Do not exceed 20 words) b)Specify the reason to re-design the business process which is already in place (describe the reason why the current process is no longer satisfactory, for…arrow_forwardThe demand for subassembly S is 100 units in week 7. Each unit of S requires 1 unit of T and 2 units of U. Each unit of T requires 1 unit of V, 2 units of W, and 1 unit of X. Finally, each unit of U requires 2 units of Y and 3 units of Z. One firm manufactures all items. It takes 2 weeks to make S, 1 week to make T, 2 weeks to make U, 2 weeks to make V, 3 weeks to make W, 1 week to make X, 2 weeks to make Y, and 1 week to make Z. Click the icon to view the product structure and the time-phased product structure. Click the icon to view the on-hand inventory. Construct a net material requirements plan using on-hand inventory (enter your responses as whole numbers). Item 1 2 3 Week 4 Lead Time 5 6 7 (weeks) S Gross req On hand Net req Order receipt Order release T Gross req On hand Net req Order receipt Order release Gross rea 100 100arrow_forwardIt is January 1 of year 0, and Merck is trying to determine whether to continue development of a newdrug. The following information is relevant. You can assume that all cash flows occur at the ends of therespective years.■ Clinical trials (the trials where the drug is tested on humans) are equally likely to be completed in year1 or 2.■ There is an 80% chance that clinical trials will succeed. If these trials fail, the FDA will not allow thedrug to be marketed.■ The cost of clinical trials is assumed to follow a triangular distribution with best case $100 million,most likely case $150 million, and worst case $250 million. Clinical trial costs are incurred at the end ofthe year clinical trials are completed.■ If clinical trials succeed, the drug will be sold for five years, earning a profit of $6 per unit sold.■ If clinical trials succeed, a plant will be built during the same year trials are completed. The cost of theplant is assumed to follow a triangular distribution with best case $1…arrow_forward
- 1) Under “Costs of Quality”, costs associated with quality can be classified into four categories: appraisal, prevention, internal failures, and external failures. The costs of quality for Corley Motors Logistics is given in the table. Cost Elements Amount Checking outbound boxes for errors $31,000 Quality planning $10,625 Downtime due to conveyor/computer problems $342,125 Incoming product inspection $21,000 Customer complaint rework $33,000 Correcting erroneous orders before shipping $36,550 Quality training of associates $25,925 Correction of typographical errors--pick tickets $11,475 a) Classify the quality cost elements given in the table into the different quality cost categories (prevention, appraisal, internal failure, external failure). b) Total the quality costs in each of the different quality cost categories (prevention, appraisal, internal failure, external failure). c) Using a) and b), suggest which areas…arrow_forwardNote: In chapter 9, section 9.4 of the Stevenson text, the costs of quality are covered; chapter 9 Stevenson lecture power point slide 7 touches upon this topic; see lecture video, 3.55 mins to 4.54 mins. 2) The production process at Hansa Ceylon Coffee fills boxes with dark arabica coffee. The data for the fill weight (in ounces) of eight samples are presented below. A sample size of six was used. The firm’s operations analyst wants to construct X-bar and R-charts to monitor the filling process. Sample Sample Mean Sample Range 1 15.80 0.42 2 16.10 0.38 3 16.02 0.08 4 15.95 0.15 5 16.12 0.42 6 16.18 0.23 7 15.87 0.36 8 16.20 0.40 a) Calculate the upper and lower control limits for the X-bar chart. b) Calculate the upper and lower control limits for the R chart. c) Is the process under control? Why or why not? Note: In chapter 10, section 10.3 of the Stevenson text, control charts for variables are…arrow_forwardDo the inherent differences between private and public sector objectives—profit versus publicgood—render private sector category management practices unsuitable for public sectorpurchasing, where open tendering is the norm?You have now undergone the Category Management classes and your superiors have requestedfor your input on how to integrate some of the learnings into the public sector policy. Discuss and elaborate what are the activities and governance you would introduce in yourrecommendations without violating the principle of transparency and accountability withinyour organisation. This is based on Singapore context. Pls provide a draft with explanation, examples and useful links for learning purposes. Citations will be good too. This is a module in SUSS called category management and supplier evaluationarrow_forward
- Travelling and working internationally can lead to a life of adventure and unique career experiences. For businesses, selecting the right candidates to take on foreign assignments can propel, delay, or deny the success of the international ventures. As an international manager, identify key competencies you would look for in choosing expatriates. What might be some of their concerns in taking on overseas assignments? What are some best practices in supporting expats during and after their assignments?arrow_forwardTravelling and working internationally can lead to a life of adventure and unique career experiences. For businesses, selecting the right candidates to take on foreign assignments can propel, delay, or deny the success of the international ventures. As an international manager, identify key competencies you would look for in choosing expatriates. What might be some of their concerns in taking on overseas assignments? What are some best practices in supporting expats during and after their assignments?arrow_forwardI need answer typing clear urjent no chatgpt used pls i will give 5 Upvotes.arrow_forward
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,Understanding Management (MindTap Course List)ManagementISBN:9781305502215Author:Richard L. Daft, Dorothy MarcicPublisher:Cengage Learning

