Concept explainers
A foreman has determined processing times at a work center for a set of jobs and now wants to sequence them. Given the information shown, do the following:
a. Determine the processing sequence using (1) FCFS, (2) SPT, (3) EDD, and (4) CR. For each sequence, compute the average job tardiness, the average flow time, and the average number of jobs at the work center. The list is in FCFS order.
b. Using the results of your calculations in part a, show that the ratio of average flow time and the average number of jobs measures are equivalent for all four sequencing rules.
c. Determine the processing sequence that would result using the S/O rule.
a)
1)
To determine: The processing sequence based on First Come First Served (FCFS).
Introduction: First Come First Served is the scheduling rule, which helps to arrange the sequence in the order. Here, the first come would be served first.
Answer to Problem 15P
Explanation of Solution
Given information:
Job | Processing time (days) | Due date (days) | Remaining number of operations |
a | 4.5 | 10 | 3 |
b | 6 | 17 | 4 |
c | 5.2 | 12 | 3 |
d | 1.6 | 27 | 5 |
e | 2.8 | 18 | 3 |
f | 3.3 | 19 | 1 |
Determine the sequence using FCFS:
According to FCFS, the first come would be served first. Hence, the jobs should be sequenced in the order as per its arrival.
Hence, the sequence of jobs using FCFS is a-b-c-d-e-f.
Determine average flow time, average tardiness, and average number of jobs for FCFS:
Job | Processing time (days) | Flow time (days) | Due date (days) | Tardiness |
a | 4.5 | 4.5 | 10 | 0 |
b | 6 | 10.5 | 17 | 0 |
c | 5.2 | 15.7 | 12 | 3.7 |
d | 1.6 | 17.3 | 27 | 0 |
e | 2.8 | 20.1 | 18 | 2.1 |
f | 3.3 | 23.4 | 19 | 4.4 |
Total | 23.4 | 91.5 | 10.2 |
Supporting calculation:
Processing time and due date are given for each job. Flow time is the cumulative of the processing time.
Tardiness of Job a:
Flowtime is less than the due date. Hence, there would be tardiness.
Tardiness of Job b:
Flowtime is less than the due date. Hence, there would be tardiness.
Tardiness of Job c:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job c is 3.7.
Note: The procedure continues for all the jobs.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 15.25 days.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 1.7 days.
Average number of jobs:
It can be determined by dividing the total flow time and total processing time.
Hence, average number of jobs is 3.9 jobs.
1)
To determine: The processing sequence based on First Come First Served (FCFS).
Introduction: First Come First Served is the scheduling rule, which helps to arrange the sequence in the order. Here, the first come would be served first.
Answer to Problem 15P
Explanation of Solution
Given information:
Job | Processing time (days) | Due date (days) | Remaining number of operations |
a | 4.5 | 10 | 3 |
b | 6 | 17 | 4 |
c | 5.2 | 12 | 3 |
d | 1.6 | 27 | 5 |
e | 2.8 | 18 | 3 |
f | 3.3 | 19 | 1 |
Determine the sequence using FCFS:
According to FCFS, the first come would be served first. Hence, the jobs should be sequenced in the order as per its arrival.
Hence, the sequence of jobs using FCFS is a-b-c-d-e-f.
Determine average flow time, average tardiness, and average number of jobs for FCFS:
Job | Processing time (days) | Flow time (days) | Due date (days) | Tardiness |
a | 4.5 | 4.5 | 10 | 0 |
b | 6 | 10.5 | 17 | 0 |
c | 5.2 | 15.7 | 12 | 3.7 |
d | 1.6 | 17.3 | 27 | 0 |
e | 2.8 | 20.1 | 18 | 2.1 |
f | 3.3 | 23.4 | 19 | 4.4 |
Total | 23.4 | 91.5 | 10.2 |
Supporting calculation:
Processing time and due date are given for each job. Flow time is the cumulative of the processing time.
Tardiness of Job a:
Flowtime is less than the due date. Hence, there would be tardiness.
Tardiness of Job b:
Flowtime is less than the due date. Hence, there would be tardiness.
Tardiness of Job c:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job c is 3.7.
Note: The procedure continues for all the jobs.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 15.25 days.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 1.7 days.
Average number of jobs:
It can be determined by dividing the total flow time and total processing time.
Hence, average number of jobs is 3.9 jobs.
2)
To determine: Sequence of jobs based on decision rule Shortest Processing Time (SPT).
Introduction: Shortest Processing Tine is the scheduling rule, which helps to arrange the sequence in the order. Here, job with the shortest duration would be served first. Then, the process would be going on from shortest to largest duration.
Answer to Problem 15P
Explanation of Solution
Given information:
Job | Processing time (days) | Due date (days) | Remaining number of operations |
a | 4.5 | 10 | 3 |
b | 6 | 17 | 4 |
c | 5.2 | 12 | 3 |
d | 1.6 | 27 | 5 |
e | 2.8 | 18 | 3 |
f | 3.3 | 19 | 1 |
Determine the sequence using SPT:
According to SPT, the job that has the shortest processing would be served first and it goes on as the processing time increase. Duration should be assembled in the ascending order
Hence, the sequence of jobs using SPT is d-e-f-a-c-b.
Determine average flow time, average tardiness, and average number of jobs for SPT:
Job | Processing time (days) | Flow time (days) | Due date (days) | Tardiness |
d | 1.6 | 1.6 | 27 | |
e | 2.8 | 4.4 | 18 | |
f | 3.3 | 7.7 | 19 | |
a | 4.5 | 12.2 | 10 | 2.2 |
c | 5.2 | 17.4 | 12 | 5.4 |
b | 6 | 23.4 | 17 | 6.4 |
Total | 23.4 | 66.7 | 14 |
Supporting calculation:
Processing time and due date are given for each job. Flow time is the cumulative of the processing time.
Tardiness of Job d, Job e, and Job f:
Flow time of Job d, Job e, and Job f is less than its respective due date. Hence, there would be no tardiness.
Tardiness of Job a:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job a is 2.2.
Tardiness of Job c:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job c is 5.4.
Tardiness of Job b:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job b is 6.4.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 11.12 days.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 2.33 days.
Average number of jobs:
It can be determined by dividing the total flow time and total processing time.
Hence, average number of jobs is 2.85 jobs.
3)
To determine: Sequence of jobs based on decision rule Earliest Due Date (EDD).
Introduction: Earliest Due Date is the scheduling rule, which helps to arrange the sequence in the order. Here, job with the earliest due date would be served first. Then, the process would be going on from earliest due date to latest due date.
Answer to Problem 15P
Explanation of Solution
Given information:
Job | Processing time (days) | Due date (days) | Remaining number of operations |
a | 4.5 | 10 | 3 |
b | 6 | 17 | 4 |
c | 5.2 | 12 | 3 |
d | 1.6 | 27 | 5 |
e | 2.8 | 18 | 3 |
f | 3.3 | 19 | 1 |
Determine the sequence using EDD:
According to EDD, the job that has the earliest due date would be served first and it goes on as the due date increases. The job should be arranged based on due date. Due date should be assembled in the ascending order
Hence, the sequence of jobs using EDD is a-c-b-e-f-d.
Determine average flow time, average tardiness, and average number of jobs for EDD:
Job | Processing time (days) | Flow time (days) | Due date (days) | Tardiness |
a | 4.5 | 4.5 | 10 | 0 |
c | 5.2 | 9.7 | 12 | 0 |
b | 6 | 15.7 | 17 | 0 |
e | 2.8 | 18.5 | 18 | 0.5 |
f | 3.3 | 21.8 | 19 | 2.8 |
d | 1.6 | 23.4 | 27 | 0 |
Total | 23.4 | 93.6 | 3.3 |
Supporting calculation:
Processing time and due date are given for each job. Flow time is the cumulative of the processing time.
Tardiness of Job a, Job c, Job b, and Job d:
Flow time of Job a, Job c, Job b, and Job d is less than its respective due date. Hence, there would be no tardiness.
Tardiness of Job e:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job e is 0.5.
Tardiness of Job f:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job f is 2.8.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 15.6 days.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 0.55 days.
Average number of jobs:
It can be determined by dividing the total flow time and total processing time.
Hence, average number of jobs is 4 jobs.
4)
To determine: Sequence of jobs based on decision rule critical ratio.
Introduction: Critical ratio is kind of scheduling rule that helps to identify that, the task or job is on the correct track. It would help to identify if the task is behind or ahead of the schedule.
Answer to Problem 15P
Explanation of Solution
Given information:
Job | Processing time (days) | Due date (days) | Remaining number of operations |
a | 4.5 | 10 | 3 |
b | 6 | 17 | 4 |
c | 5.2 | 12 | 3 |
d | 1.6 | 27 | 5 |
e | 2.8 | 18 | 3 |
f | 3.3 | 19 | 1 |
Determine the sequence using critical ratio:
Initial critical ratio should be determined at day 0:
Job | Processing time (days) | Due date (days) | Critical ratio |
a | 4.5 | 10 | 2.22 |
b | 6 | 17 | 2.83 |
c | 5.2 | 12 | 2.31 |
d | 1.6 | 27 | 16.88 |
e | 2.8 | 18 | 6.43 |
f | 3.3 | 19 | 5.76 |
Critical ratio for Job a:
It is can be determined by dividing the value attained by subtracting the completion day of previous job from the due date of current job with the processing time.
Note: Process continues for all the jobs.
Job a has the lowest critical ratio. Thus, it will be completed first. Hence, Job a would be completed first in the sequence of jobs.
Determine the critical ratio after the completion of Job a:
As the processing time of job a is 4.5 days, completion day of completed day would be 4.5.
Job | Processing time (days) | Due date (days) | Critical ratio |
a | |||
b | 6 | 17 | 2.08 |
c | 5.2 | 12 | 1.44 |
d | 1.6 | 27 | 14.06 |
e | 2.8 | 18 | 4.82 |
f | 3.3 | 19 | 4.39 |
Critical ratio for Job b:
It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.
Note: Process continues for all the jobs.
Job c has the lowest critical ratio. Hence, Job c would be completed next in the sequence of jobs.
Determine the critical ratio after the completion of Job a and Job c:
As the processing time of job a is 4.5 days and Job c is 5.2, completion day of completed day would be 9.7 (4.5+5.2).
Job | Processing time (days) | Due date (days) | Ratio |
a | |||
b | 6 | 17 | 1.22 |
c | |||
d | 1.6 | 27 | 10.81 |
e | 2.8 | 18 | 2.96 |
f | 3.3 | 19 | 2.82 |
Critical ratio for Job b:
It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.
Job b has the lowest critical ratio. Hence, Job b would be completed next in the sequence of jobs after Job a and Job c.
Determine the critical ratio after the completion of Job a, Job c and Job b:
As the processing time of job a is 4.5 days, Job b is 6.0, and Job c is 5.2 days. Completion day of completed day would be 15.7 (4.5+5.2+6).
Job | Processing time (days) | Due date (days) | Ratio |
a | |||
b | |||
c | |||
d | 1.6 | 27 | 7.06 |
e | 2.8 | 18 | 0.82 |
f | 3.3 | 19 | 1 |
Critical ratio for Job d:
It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.
Job e has the lowest critical ratio. Hence, Job e would be completed next in the sequence of jobs after Job a, Job c, and Job b.
Determine the critical ratio after the completion of Job a, Job c, Job b, and job e:
As the processing time of job a is 4.5 days, Job b is 6.0, Job c is 5.2 days, and job e is 2.8. Completion day of completed day would be 18.5 (4.5+5.2+6+2.8).
Job | Processing time (days) | Due date (days) | Ratio |
a | |||
b | |||
c | |||
d | 1.6 | 27 | 5.31 |
e | |||
f | 3.3 | 19 | 0.15 |
Critical ratio for Job d:
It is can be determined by dividing the value attained by subtracting the completion day of completed job from the due date of current job with the processing time.
Job f has the lowest critical ratio. Hence, Job f would be completed next in the sequence of jobs after Job a, Job c, Job b, and Job e.
As Job d is the remaining job, it will be completed next.
Hence, the sequence of jobs using critical ratio is a-c-b-e-f-d.
Determine average flow time, average tardiness, and average number of jobs for critical ratio:
Job | Processing time (days) | Flow time (days) | Due date (days) | Tardiness |
a | 4.5 | 4.5 | 10 | 0 |
c | 5.2 | 9.7 | 12 | 0 |
b | 6 | 15.7 | 17 | 0 |
e | 2.8 | 18.5 | 18 | 0.5 |
f | 3.3 | 21.8 | 19 | 2.8 |
d | 1.6 | 23.4 | 27 | 0 |
Total | 23.4 | 93.6 | 3.3 |
Supporting calculation:
Processing time and due date are given for each job. Flow time is the cumulative of the processing time.
Tardiness of Job a, Job c, Job b, and Job d:
Flow time of Job a, Job c, Job b, and Job d is less than its respective due date. Hence, there would be no tardiness.
Tardiness of Job e:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job e is 0.5.
Tardiness of Job f:
It is calculated by subtracting the flow time of the job from the due date of the project. Hence, the lateness of Job f is 2.8.
Average flow time:
It is calculated by dividing the total flow time and number of jobs.
Hence, average flow time is 15.6 days.
Average tardiness:
It is calculated by dividing the total tardiness and number of jobs.
Hence, average tardiness is 0.55 days.
Average number of jobs:
It can be determined by dividing the total flow time and total processing time.
Hence, average number of jobs is 4 jobs.
b)
To determine: Whether the average flow time and average number of jobs are equivalent for four sequencing rules.
Introduction: Sequencing is the process of arranging the jobs in certain order in which it should be performed.
Answer to Problem 15P
Explanation of Solution
Given information:
Job | Processing time (days) | Due date (days) | Remaining number of operations |
a | 4.5 | 10 | 3 |
b | 6 | 17 | 4 |
c | 5.2 | 12 | 3 |
d | 1.6 | 27 | 5 |
e | 2.8 | 18 | 3 |
f | 3.3 | 19 | 1 |
Determine whether the average flow time and average number of jobs are equivalent for four sequencing rules:
Rule | Average flow time | Average number of jobs | Ratio |
FCFS | 15.25 | 3.91 | 3.9 |
SPT | 11.12 | 2.85 | 3.9 |
EDD | 15.6 | 4 | 3.9 |
CR | 15.6 | 4 | 3.9 |
Calculate ratio for FCFS:
It is calculated by dividing average flow time and average number of jobs.
Calculate ratio for SPT:
It is calculated by dividing average flow time and average number of jobs.
Calculate ratio for EDD:
It is calculated by dividing average flow time and average number of jobs.
Calculate ratio for CR:
It is calculated by dividing average flow time and average number of jobs.
c)
To determine: The processing sequence of the jobs using Slack per Operation (S/O) rule
Introduction: Slack per operation is a scheduling method that helps to determine the sequence of the operation. Slack is the difference between the due date and the required time to process certain job.
Answer to Problem 15P
Explanation of Solution
Given information:
The following information is given:
Job | Processing time (days) | Due date | Remaining number of operations |
a | 5 | 8 | 2 |
b | 6 | 5 | 4 |
c | 9 | 10 | 4 |
d | 7 | 12 | 3 |
e | 8 | 10 | 2 |
Determine the processing sequence of the jobs using Slack per Operation:
Job | Job time (days) | Due date (days) | Operations remaining | Slack | Slack per operation (S/O) | Rank |
a | 4.5 | 10 | 3 | 5.5 | 1.83 | 1 |
b | 6 | 17 | 4 | 11 | 2.75 | 3 |
c | 5.2 | 12 | 3 | 6.8 | 2.27 | 2 |
d | 1.6 | 27 | 5 | 25.4 | 5.08 | 5 |
e | 2.8 | 18 | 3 | 15.2 | 5.07 | 4 |
f | 3.3 | 19 | 1 | 15.7 | 15.7 | 6 |
Supporting calculation:
Processing time, due date, and remaining number of operation is given. Rank should be assigned according to the slack per operation.
Calculate slack:
It can be calculated by subtracting the processing time from the due date.
Note: The process continues for all the jobs:
Calculate slack per operation:
It can be calculated by dividing the slack value and the remaining number of operations.
Note: The process continues for all the jobs:
Hence, the sequence of jobs using S/O is a-c-b-e-d-f.
Want to see more full solutions like this?
Chapter 16 Solutions
Operations Management
- وبة واضافة هذه القيمة الى القيم Ex: Assign each job for each worker at minimum total Cost عمل لكل عامل وبأقل كلفة ممكنة obs الأعمال Workors العمال J1 J2 J3 J4 W₁ 15 13 14 12 W2 11 12 15 13 W3 13 12 10 11 W4 15 17 14 16arrow_forwardThe average completion time (flow time) for the sequence developed using the FCFS rule = 11.75 days (round your response to two decimal places). The percentage utilization for the sequence developed using the FCFS rule = 42.55 % (enter your response as a percentage rounded to two decimal places). b) Using the SPT (shortest processing time) decision rule for sequencing the jobs, the order is (to resolve a tie, use the order in which the jobs were received): An Alabama lumberyard has four jobs on order, as shown in the following table. Today is day 205 on the yard's schedule. In what sequence would the jobs be ranked according to the decision rules on the left: Job Due Date A 212 B 209 C 208 D 210 Duration (days) 6 3 3 8 Sequence 1 Job B 2 3 4 A D The average tardiness (job lateness) for the sequence developed using the SPT rule = 5.00 days (round your response to two decimal places). The average completion time (flow time) for the sequence developed using the SPT rule = 10.25 days…arrow_forwardWith the aid of examples, fully discuss any five (5) political tactics used in organisations.arrow_forward
- a. With the aid of examples, define discrimination. b. Fully discuss any four (4) types of discrimination in the workplacearrow_forwardRead the Following Extract and Answer the Questions that Follows:The word politics has a somewhat negative connotation. It suggests that someone is attempting touse means or to gain ends that are not sanctioned by the organisation. Political behaviour, as we’vedefined it is quite neutral. Similarly, power is not inherently negative. Whether a person viewspower and politics as unsavoury topics depends on several considerations, most important perhapsbeing where the individual stands on a specific issue in each situation. Nonetheless, most managersare reluctant to admit to political character of their own work settings.Discuss any Five (5) Political tactics you know.arrow_forwardDescribe current features of Cigna Accredo pharmacy own appraisal forms and compare the system used against the textbook’s description of desirable features of appraisal forms. What improvements would you recommend and why?arrow_forward
- Provide a recommendation of a combination of different methods of performance data that could be used to arrive at an overall score for each person being rated in cigna Accredo pharmacy. Explain the comprehensive system you have recommended and why you have chosen this combination of tools. Support your answer with research.arrow_forwardAlready got wrong answer Plz Don't use chatgptarrow_forwardThe RTY calculation for the following process steps would be: A ➡ ○ A.YA+YB+YC+YD OB. (YA)(YB)(YCYD) OC. ((YA+YB+YC+YD)/4)*4 ○ D. (1/YA)+(1/YB)+(1/YC)+YD B C Darrow_forward
- Can you guys help me with this? 1. What did you learn about the case, the concepts of transformational leadership; transactional leadership; Herzberg's Two Factors; Maslow's Hierarchy of needs theories that been applied through the case? Here is the case: Theranos (2003-2018):Overview: Theranos promised to revolutionize blood testing but was exposed formisleading claims about its technology, leading to its collapse 2. What did you learn about the case between Elon Musk and Twitter, the concepts of transformational leadership; transactional leadership; Herzberg's Two Factors Theory; Maslow's Hierarchy of needs theories that been applied through the case? 3. What did you learn about the case of Blockbuster's decline and their failure to adapt with digital streaming, the concepts of autocratic leadership; transactional leadership; Herzberg's Two Factors; Maslow's Hierarchy of needs theories that been applied through the case?arrow_forwardCan you guys help me with this? 1. What did you learn about the case, the concepts of transformational leadership; transactional leadership; Herzberg's Two Factors; and Maslow's Hierarchy of needs theories that have been applied through the case? Here is the case: The COVID-19 Pandemic Response (2020-Present): Overview: Global leaders had to navigate an unprecedented health crisis, balancingpublic health needs with economic pressures. 2. What did you learn about the case, the concepts of transformational leadership; transactional leadership; Herzberg's Two Factors Theory; and Maslow's Hierarchy of Needs theories that have been applied through the case? Here's the case: Google Glass (2013):Overview: Google launched its augmented reality glasses with high expectations, butprivacy concerns and limited functionality led to poor adoption 3. What did you learn about the case of Kodak's failure to keep up with digital photography, the concepts of autocratic leadership; transformational…arrow_forwardWith the above information do the following:1. Based on the From-To chart presented develop an ActivityRelationship Chart for this operation.2. Develop a Space-Relationship Diagram for this operation.3. Evaluate the actual layout using the “Distance Traveled byProduct” technique discussed in class (use rectilinear distance inall calculations).4. Develop two layout improvement alternatives.5. Evaluate alternatives using the “Distance Traveled by Product”technique discussed in class (use rectilinear distance in allcalculations).6. Make a layout recommendation based on alternatives evaluatedarrow_forward
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,Operations ManagementOperations ManagementISBN:9781259667473Author:William J StevensonPublisher:McGraw-Hill EducationOperations and Supply Chain Management (Mcgraw-hi...Operations ManagementISBN:9781259666100Author:F. Robert Jacobs, Richard B ChasePublisher:McGraw-Hill Education
- Purchasing and Supply Chain ManagementOperations ManagementISBN:9781285869681Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. PattersonPublisher:Cengage LearningProduction and Operations Analysis, Seventh Editi...Operations ManagementISBN:9781478623069Author:Steven Nahmias, Tava Lennon OlsenPublisher:Waveland Press, Inc.