![EBK CHEMISTRY](https://www.bartleby.com/isbn_cover_images/8220102797864/8220102797864_largeCoverImage.jpg)
Concept explainers
Determine pH at the equivalence point in the titration of 26.0 mL 1.12 M pyridine with
(a) 7.00
(b) 2.76
(c) 11.24
(d) 1.73
(e) 12.27
![Check Mark](/static/check-mark.png)
Interpretation:
The pH at the equivalence point in the titration of pyridine with hydrochloric acid is to be determined.
Concept introduction:
When a weak base is titrated against a strong acid, the conjugate acid of the weak base is formed in the reaction, as shown:
This conjugate acid now acts as a Bronsted acid and reacts with water to form weak base and hydronium ions according to the reaction:
Here,
The relationship between
Where,
The formula to calculate the pH of the solution from the concentration of hydronium ions is expressed as
Molarity
Rearrange this equation in terms of moles as shown
When volume is given in
Answer to Problem 4KSP
Correct answer: Option (b).
Explanation of Solution
Given information:
The concentration of pyridine
Reason for correct option:
From the given values of concentration and volume, calculate the number of millimoles of pyridineusing equation (4)
Being a strong acid,
At equivalence point, during the titration process, millimoles of weak base must be equal to the millimoles of the strong acid. Thus,
As the concentration of
Thus, the total volume of the solution containing
During titration, the weak base completelyneutralizes. Thus, the moles of weak base reacted is equal to the moles of its conjugate acid formed. Therefore,
Thus, the concentration of the conjugate acid
The anion
From table
Now, prepare an equilibrium table and represent each of the species in terms of
Now, substitute these concentrations in equation (2)
Since the value of
Thus,
Now, substitute the value of
Therefore, the equivalence pH of the solution is
Reason for incorrect options:
Since
Since
Since
Since
Therefore, options (a), (c), (d), and (e) are incorrect.
Want to see more full solutions like this?
Chapter 16 Solutions
EBK CHEMISTRY
- Blackboard app.aktiv.com X Organic Chemistry II Lecture (mx Aktiv Learning App Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 25 of 35 Select to Edit Arrows CH3CH2OK, CH3CH2OH L Gemini M 31 0:0 :0: 5x Undo Reset Done :0: Harrow_forwardI have some reactions here for which I need to predict the products. Can you help me solve them and rewrite the equations, as well as identify the type of reaction? Please explain it to me.I have some reactions here for which I need to predict the products. Can you help me solve them and rewrite the equations, as well as identify the type of reaction? Please explain it to marrow_forwardDraw the major product of this reaction. Ignore inorganic byproducts. Problem 17 of 35 1. CH3CH2Li O H 2. Neutralizing work-up @ Atoms, Bonds and Rings Draw or tap a new boarrow_forward
- Will this convert the C=O to an alcohol? Or does its participation in the carboxy group prevent that from happening?arrow_forwardI have some reactions here for which I need to predict the products. Can you help me solve them and rewrite the equations, as well as identify the type of reaction? Please explain it to me.I have some reactions here for which I need to predict the products. Can you help me solve them and rewrite the equations, as well as identify the type of reaction? Please explain it to marrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168390/9781938168390_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)