The degree of dissociation of dimer and the equilibrium concentration ( K p ) at the particular temperature and pressure are to be calculated. Concept Introduction: An ideal gas can be characterized by three state variables, namely absolute pressure ( P ) , volume, and absolute temperature ( T ) . The relation between them that may be reduced from kinetic theory is called the ideal gas equation. The ideal gas equation is as follows: P V = n R T . Here, V is the volume, n is the number of moles, R is the universal gas constant, P is the pressure of the gas, and T is the temperature of the gas. The number of moles of a solute divided by the number of litres of solution is called molarity. The number moles of NaOH reacted with a dimer of acetic acid using the molarity is as follows: M o l a r i t y = M o l e s V o l u m e . The moles of the dimer are calculated as follows: Moles of dimer = M o l e s of NaOH 2 .
The degree of dissociation of dimer and the equilibrium concentration ( K p ) at the particular temperature and pressure are to be calculated. Concept Introduction: An ideal gas can be characterized by three state variables, namely absolute pressure ( P ) , volume, and absolute temperature ( T ) . The relation between them that may be reduced from kinetic theory is called the ideal gas equation. The ideal gas equation is as follows: P V = n R T . Here, V is the volume, n is the number of moles, R is the universal gas constant, P is the pressure of the gas, and T is the temperature of the gas. The number of moles of a solute divided by the number of litres of solution is called molarity. The number moles of NaOH reacted with a dimer of acetic acid using the molarity is as follows: M o l a r i t y = M o l e s V o l u m e . The moles of the dimer are calculated as follows: Moles of dimer = M o l e s of NaOH 2 .
Solution Summary: The author explains the degree of dissociation of dimer and the equilibrium concentration at the particular temperature and pressure are to be calculated.
The degree of dissociation of dimer and the equilibrium concentration (Kp) at the particular temperature and pressure are to be calculated.
Concept Introduction:
An ideal gas can be characterized by three state variables, namely absolute pressure (P), volume, and absolute temperature (T). The relation between them that may be reduced from kinetic theory is called the ideal gas equation.
The ideal gas equation is as follows:
PV=nRT.
Here, V is the volume, n is the number of moles, R is the universal gas constant, P is the pressure of the gas, and T is the temperature of the gas.
The number of moles of a solute divided by the number of litres of solution is called molarity.
The number moles of NaOH reacted with a dimer of acetic acid using the molarity is as follows:
Recognizing ampli
Draw an a amino acid with a methyl (-CH3) side chain.
Explanation
Check
Click and drag to start drawing a
structure.
X
C
Write the systematic name of each organic molecule:
structure
name
×
HO
OH
☐
OH
CI
CI
O
CI
OH
OH
く
Check the box under each a amino acid.
If there are no a amino acids at all, check the "none of them" box under the table.
Note for advanced students: don't assume every amino acid shown must be found in nature.
COO
H3N-C-H
CH2
HO
CH3
NH3 O
CH3-CH
CH2
OH
Onone of them
Explanation
Check
+
H3N
O
0.
O
OH
+
NH3
CH2
CH3-CH
H2N C-COOH
H
O
HIC
+
C=O
H3N-C-O
CH3- - CH
CH2
OH
Х
2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Acces
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.