(a)
Interpretation:
The appropriate number with the quantity reactants needs to be matched.
Concept introduction:
An activated complex is formed as a result of collision between two particles with a sufficient amount of energy required for the collision. When the colliding particles break their bonds to form new bonds with the atoms of the particles it has undergo collision, a temporary transition state is generated which is an activated complex.
Answer to Problem 45A
Location 2 represents thereactants molecules.
Explanation of Solution
In the figure,
The energy diagram is shown for the endothermic reaction. In the beginning, the reactants begin at a lower energy than that of the products and the reactants absorbs adequate energy to overcome the activation energy barrier. After the crossing of the barrier, an activated complex is formed.
In a reaction, reactants are first thing that appear and it have the lowest energy in an exothermic reaction.
So, the correct answer for reactants is location 2.
(b)
Interpretation:
The appropriate number with the quantity activated complex needs to be matched.
Concept introduction:
An activated complex is formed as a result of collision between two particles with a sufficient amount of energy required for the collision. When the colliding particles break their bonds to form new bonds with the atoms of the particles it has undergo collision, a temporary transition state is generated which is an activated complex.
(b)
Answer to Problem 45A
Location 3 represents the activated complex.
Explanation of Solution
In the figure,
The energy diagram is shown for the endothermic reaction. In the beginning, the reactants begin at a lower energy than that of the products and the reactants absorbs adequate energy to overcome the activation energy barrier. After the crossing of the barrier, an activated complex is formed.
An activated complex is formed as a result of collision between two particles with a sufficient amount of energy required for the collision. After the crossing of the barrier, an activated complex starts forming.
So, as location 3 comes after location 2, the correct answer representing an activated complex is location 3.
(c)
Interpretation:
To match the appropriate number with the quantity products represents.
Concept introduction:
An activated complex is formed as a result of collision between two particles with a sufficient amount of energy required for the collision. When the colliding particles break their bonds to form new bonds with the atoms of the particles it has undergo collision, a temporary transition state is generated which is an activated complex.
(c)
Answer to Problem 45A
Location 4 represents the product.
Explanation of Solution
In the figure,
The energy diagram is shown for the endothermic reaction. In the beginning, the reactants begin at a lower energy than that of the products and the reactants absorbs adequate energy to overcome the activation energy barrier. After the crossing of the barrier, an activated complex is formed.
After the formation of the complex, the products start forming.
So, as location 4 comes after location 3, the correct answer representing an activated complex is location 4.
(d)
Interpretation:
To match the appropriate number with the quantity activation energyrepresents.
Concept introduction:
An activated complex is formed as a result of collision between two particles with a sufficient amount of energy required for the collision. When the colliding particles break their bonds to form new bonds with the atoms of the particles it has undergo collision, a temporary transition state is generated which is an activated complex.
(d)
Answer to Problem 45A
Location 1 represents the activation energy.
Explanation of Solution
In the figure,
The energy diagram is shown for the endothermic reaction. In the beginning, the reactants begin at a lower energy than that of the products and the reactants absorbs adequate energy to overcome the activation energy barrier. After the crossing of the barrier, an activated complex is formed.
The activation energy value is the difference in energy value of reactants and activated complex.
Location 1 represents the activation energy, as the difference in energy is designated by location 1.
Chapter 16 Solutions
Glencoe Chemistry: Matter and Change, Student Edition
Additional Science Textbook Solutions
Campbell Biology in Focus (2nd Edition)
Biology: Life on Earth (11th Edition)
College Physics: A Strategic Approach (3rd Edition)
Campbell Essential Biology (7th Edition)
Microbiology: An Introduction
Human Anatomy & Physiology (2nd Edition)
- Don't used hand raitingarrow_forwardRelative Intensity Part VI. consider the multi-step reaction below for compounds A, B, and C. These compounds were subjected to mass spectrometric analysis and the following spectra for A, B, and C was obtained. Draw the structure of B and C and match all three compounds to the correct spectra. Relative Intensity Relative Intensity 100 HS-NJ-0547 80 60 31 20 S1 84 M+ absent 10 30 40 50 60 70 80 90 100 100- MS2016-05353CM 80- 60 40 20 135 137 S2 164 166 0-m 25 50 75 100 125 150 m/z 60 100 MS-NJ-09-43 40 20 20 80 45 S3 25 50 75 100 125 150 175 m/zarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Predicting the pro Predict the major products of this organic reaction. Explanation Check m ☐ + 5 1.03 Click and drag t drawing a stru 2. (CH₂)₂S 3 2 © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forwardstarting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... X Explanation Check C टे Br T Add/Remove step ☐ Br Br © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacarrow_forwardDon't used hand raitingarrow_forward
- Relative Intensity Part VI. consider the multi-step reaction below for compounds A, B, and C. These compounds were subjected to mass spectrometric analysis and the following spectra for A, B, and C was obtained. Draw the structure of B and C and match all three compounds to the correct spectra. Relative Intensity Relative Intensity 100 HS-NJ-0547 80 60 31 20 S1 84 M+ absent 10 30 40 50 60 70 80 90 100 100- MS2016-05353CM 80- 60 40 20 135 137 S2 164 166 0-m 25 50 75 100 125 150 m/z 60 100 MS-NJ-09-43 40 20 20 80 45 S3 25 50 75 100 125 150 175 m/zarrow_forwardPart II. Given two isomers: 2-methylpentane (A) and 2,2-dimethyl butane (B) answer the following: (a) match structures of isomers given their mass spectra below (spectra A and spectra B) (b) Draw the fragments given the following prominent peaks from each spectrum: Spectra A m/2 =43 and 1/2-57 spectra B m/2 = 43 (c) why is 1/2=57 peak in spectrum A more intense compared to the same peak in spectrum B. Relative abundance Relative abundance 100 A 50 29 29 0 10 -0 -0 100 B 50 720 30 41 43 57 71 4-0 40 50 60 70 m/z 43 57 8-0 m/z = 86 M 90 100 71 m/z = 86 M -O 0 10 20 30 40 50 60 70 80 -88 m/z 90 100arrow_forwardPart IV. C6H5 CH2CH2OH is an aromatic compound which was subjected to Electron Ionization - mass spectrometry (El-MS) analysis. Prominent m/2 values: m/2 = 104 and m/2 = 9) was obtained. Draw the structures of these fragments.arrow_forward
- For each reaction shown below follow the curved arrows to complete each equationby showing the structure of the products. Identify the acid, the base, the conjugated acid andconjugated base. Consutl the pKa table and choose the direciton theequilibrium goes. However show the curved arrows. Please explain if possible.arrow_forwardA molecule shows peaks at 1379, 1327, 1249, 739 cm-1. Draw a diagram of the energy levels for such a molecule. Draw arrows for the possible transitions that could occur for the molecule. In the diagram imagine exciting an electron, what are its various options for getting back to the ground state? What process would promote radiation less decay? What do you expect for the lifetime of an electron in the T1 state? Why is phosphorescence emission weak in most substances? What could you do to a sample to enhance the likelihood that phosphorescence would occur over radiationless decay?arrow_forwardRank the indicated C—C bonds in increasing order of bond length. Explain as why to the difference.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY