Computer Science: An Overview (12th Edition)
Computer Science: An Overview (12th Edition)
12th Edition
ISBN: 9780133760064
Author: Glenn Brookshear, Dennis Brylow
Publisher: PEARSON
Expert Solution & Answer
Book Icon
Chapter 1.6, Problem 2QE

a.

Explanation of Solution

Determine the two’s complement representation of the base ten representations 6:

  • In the base ten representations 6, the number is a positive value.
  • Convert the base ten representations to its equivalent two’s compliment representation using 8 bits pattern, divide the number 6 until the quotient is zero as shown below,

262302110

b.

Explanation of Solution

Determine the two’s complement representation of the base ten representations 6:

  • In the base ten representations 6, the number is a negative value.
  • Convert the base ten representations to its equivalent two’s compliment representation using 8 bits pattern, divide the number 6 until the quotient is zero as shown below,

2623021101

  • Write the binary representation from the above table in sequence of remainder from down to top, then padding the bit pattern to 8 bits

c.

Explanation of Solution

Determine the two’s complement representation of the base ten representations 17:

  • In the base ten representations 17, the number is a negative value.
  • Convert the base ten representations to its equivalent two’s compliment representation using 8 bit pattern, divide the number 17 until the quotient is zero as shown below,

21728124022021001

  • Write the binary representation from the above table in sequence of remainder from down to top, then padding the bit pattern to 8 bits

d.

Explanation of Solution

Determine the two’s complement representation of the base ten representations 13:

  • In the base ten representations 13, the number is a positive value.
  • Convert the base ten representations to its equivalent two’s compliment representation using 8 bit pattern, divide the number 13 until the quotient is zero as shown below,

213261230211

e.

Explanation of Solution

Determine the two’s complement representation of the base ten representations 1:

  • In the base ten representations 1, the number is a negative value.
  • Convert the base ten representations to its equivalent two’s compliment representation using 8 bits pattern, divide the number 1 until the quotient is zero as shown below,

2101

  • Write the binary representation from above table in sequence of remainder from down to top, then padding the bit pattern to 8 bits. The binary pattern of given number is,

1=(1)2=(00000001)2

  • Convert the above binary representation to its equivalent two’s complement representation, complement the binary pattern and then add 1 to it

f.

Explanation of Solution

Determine the two’s complement representation of the base ten representations 0:

  • In the base ten representations 0, the number is a positive value.
  • Convert the base ten representations to its equivalent two’s compliment representation using 8 bits pattern, divide the number 0 until the quotient is zero as shown below,

2000

  • Write the binary representation from the above table in sequence of remainder from down to top, then padding the bit pattern to 8 bits

Blurred answer
Students have asked these similar questions
1.) Consider the problem of determining whether a DFA and a regular expression are equivalent. Express this problem as a language and show that it is decidable. ii) Let ALLDFA = {(A)| A is a DFA and L(A) = "}. Show that ALLDFA is decidable. iii) Let AECFG = {(G)| G is a CFG that generates &}. Show that AECFG is decidable. iv) Let ETM {(M)| M is a TM and L(M) = 0}. Show that ETM, the complement of Erm, is Turing-recognizable. Let X be the set {1, 2, 3, 4, 5} and Y be the set {6, 7, 8, 9, 10). We describe the functions f: XY and g: XY in the following tables. Answer each part and give a reason for each negative answer. n f(n) n g(n) 1 6 1 10 2 7 2 9 3 6 3 8 4 7 4 7 5 6 5 6 Aa. Is f one-to-one? b. Is fonto? c. Is fa correspondence? Ad. Is g one-to-one? e. Is g onto? f. Is g a correspondence? vi) Let B be the set of all infinite sequences over {0,1}. Show that B is uncountable using a proof by diagonalization.
Can you find the least amount of different numbers to pick from positive numbers (integers) that are at most 100 to confirm two numbers that add up to 101 when each number can be picked at most two times?
Can you find the formula for an that satisfies the provided recursive definition? Please show all steps and justification

Chapter 1 Solutions

Computer Science: An Overview (12th Edition)

Ch. 1.3 - Prob. 2QECh. 1.3 - Prob. 3QECh. 1.3 - Prob. 4QECh. 1.3 - Prob. 5QECh. 1.3 - Prob. 6QECh. 1.4 - Here is a message encoded in ASCII using 8 bits...Ch. 1.4 - In the ASCII code, what is the relationship...Ch. 1.4 - Prob. 3QECh. 1.4 - Prob. 4QECh. 1.4 - Convert each of the following binary...Ch. 1.4 - Prob. 6QECh. 1.4 - What is the largest numeric value that could be...Ch. 1.4 - An alternative to hexadecimal notation for...Ch. 1.4 - What is an advantage of representing images via...Ch. 1.4 - Prob. 10QECh. 1.5 - Convert each of the following binary...Ch. 1.5 - Convert each of the following base ten...Ch. 1.5 - Convert each of the following binary...Ch. 1.5 - Express the following values in binary notation:...Ch. 1.5 - Perform the following additions in binary...Ch. 1.6 - Convert each of the following twos complement...Ch. 1.6 - Prob. 2QECh. 1.6 - Suppose the following bit patterns represent...Ch. 1.6 - Suppose a machine stores numbers in twos...Ch. 1.6 - In the following problems, each bit pattern...Ch. 1.6 - Prob. 6QECh. 1.6 - Prob. 7QECh. 1.6 - Prob. 8QECh. 1.6 - Prob. 9QECh. 1.6 - Prob. 10QECh. 1.6 - Prob. 11QECh. 1.7 - Prob. 1QECh. 1.7 - Prob. 3QECh. 1.7 - Prob. 4QECh. 1.8 - What makes Python an interpreted programming...Ch. 1.8 - Write Python statements that print the following:...Ch. 1.8 - Write Python statements to make the following...Ch. 1.8 - Write a Python statement that given an existing...Ch. 1.9 - Prob. 1QECh. 1.9 - Prob. 2QECh. 1.9 - Prob. 3QECh. 1.9 - Prob. 4QECh. 1.9 - Prob. 5QECh. 1.9 - Prob. 6QECh. 1.9 - Prob. 7QECh. 1.10 - Prob. 1QECh. 1.10 - Could errors have occurred in a byte from Question...Ch. 1.10 - Prob. 3QECh. 1.10 - Prob. 4QECh. 1.10 - Prob. 5QECh. 1.10 - Prob. 6QECh. 1 - Determine the output of each of the following...Ch. 1 - a. What Boolean operation does the circuit...Ch. 1 - a. If we were to purchase a flip-flop circuit from...Ch. 1 - Assume that both of the inputs in the following...Ch. 1 - The following table represents the addresses and...Ch. 1 - How many cells can be in a computers main memory...Ch. 1 - Prob. 7CRPCh. 1 - Prob. 8CRPCh. 1 - Prob. 9CRPCh. 1 - Prob. 10CRPCh. 1 - Suppose a picture is represented on a display...Ch. 1 - Prob. 12CRPCh. 1 - Prob. 13CRPCh. 1 - If each sector on a magnetic disk contains 1024...Ch. 1 - How many bytes of storage space would be required...Ch. 1 - Prob. 16CRPCh. 1 - Prob. 17CRPCh. 1 - Suppose a typist could type 60 words per minute...Ch. 1 - Prob. 19CRPCh. 1 - Prob. 20CRPCh. 1 - Prob. 21CRPCh. 1 - Prob. 22CRPCh. 1 - Prob. 23CRPCh. 1 - Prob. 24CRPCh. 1 - Prob. 25CRPCh. 1 - Prob. 26CRPCh. 1 - Prob. 27CRPCh. 1 - Prob. 28CRPCh. 1 - Prob. 29CRPCh. 1 - Prob. 30CRPCh. 1 - Prob. 31CRPCh. 1 - Prob. 32CRPCh. 1 - Prob. 33CRPCh. 1 - Prob. 34CRPCh. 1 - Prob. 35CRPCh. 1 - Prob. 36CRPCh. 1 - Prob. 37CRPCh. 1 - Prob. 38CRPCh. 1 - Prob. 39CRPCh. 1 - Prob. 40CRPCh. 1 - Prob. 41CRPCh. 1 - Prob. 42CRPCh. 1 - Prob. 43CRPCh. 1 - Prob. 44CRPCh. 1 - Prob. 45CRPCh. 1 - What would be the hexadecimal representation of...Ch. 1 - Prob. 47CRPCh. 1 - Prob. 48CRPCh. 1 - Prob. 49CRPCh. 1 - Prob. 50CRPCh. 1 - Prob. 51CRPCh. 1 - Prob. 52CRPCh. 1 - Prob. 53CRPCh. 1 - Prob. 54CRPCh. 1 - Prob. 55CRPCh. 1 - Prob. 56CRPCh. 1 - Prob. 57CRPCh. 1 - Prob. 58CRPCh. 1 - Write and test a Python script that, given a...Ch. 1 - Prob. 61CRPCh. 1 - Prob. 2SICh. 1 - Prob. 3SICh. 1 - Prob. 4SICh. 1 - Prob. 5SICh. 1 - Prob. 6SICh. 1 - Prob. 7SI
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Text book image
CMPTR
Computer Science
ISBN:9781337681872
Author:PINARD
Publisher:Cengage
Text book image
Enhanced Discovering Computers 2017 (Shelly Cashm...
Computer Science
ISBN:9781305657458
Author:Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. Campbell
Publisher:Cengage Learning
Text book image
COMPREHENSIVE MICROSOFT OFFICE 365 EXCE
Computer Science
ISBN:9780357392676
Author:FREUND, Steven
Publisher:CENGAGE L
Text book image
A+ Guide to Hardware (Standalone Book) (MindTap C...
Computer Science
ISBN:9781305266452
Author:Jean Andrews
Publisher:Cengage Learning