Computer Science: An Overview (12th Edition)
12th Edition
ISBN: 9780133760064
Author: Glenn Brookshear, Dennis Brylow
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 1.6, Problem 8QE
Program Plan Intro
Overflow problem:
- Overflow is the problem that occurs when a computation produces a value that falls outside the range of values that can be represented.
- When using two’s complement notation, this might occur when adding two positive values or when adding two negative values.
- The condition can be detected by checking the sign bit of the answer.
- An overflow is indicated if the addition of two positive values results in the pattern for a negative value or if the sum of two negative values appears to be positive.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Do it asap
Explain the concept of two's complement representation for signed integers in binary. How does it handle positive and negative numbers, and why is it widely used in computer systems?
Computer Science Question
Chapter 1 Solutions
Computer Science: An Overview (12th Edition)
Ch. 1.1 - What input bit patterns will cause the following...Ch. 1.1 - In the text, we claimed that placing a 1 on the...Ch. 1.1 - Assuming that both inputs to the flip-flop in...Ch. 1.1 - a. If the output of an AND gate is passed through...Ch. 1.1 - Prob. 5QECh. 1.1 - Prob. 6QECh. 1.2 - If the memory cell whose address is 5 contains the...Ch. 1.2 - Prob. 2QECh. 1.2 - How many bits would be in the memory of a computer...Ch. 1.3 - Prob. 1QE
Ch. 1.3 - Prob. 2QECh. 1.3 - Prob. 3QECh. 1.3 - Prob. 4QECh. 1.3 - Prob. 5QECh. 1.3 - Prob. 6QECh. 1.4 - Here is a message encoded in ASCII using 8 bits...Ch. 1.4 - In the ASCII code, what is the relationship...Ch. 1.4 - Prob. 3QECh. 1.4 - Prob. 4QECh. 1.4 - Convert each of the following binary...Ch. 1.4 - Prob. 6QECh. 1.4 - What is the largest numeric value that could be...Ch. 1.4 - An alternative to hexadecimal notation for...Ch. 1.4 - What is an advantage of representing images via...Ch. 1.4 - Prob. 10QECh. 1.5 - Convert each of the following binary...Ch. 1.5 - Convert each of the following base ten...Ch. 1.5 - Convert each of the following binary...Ch. 1.5 - Express the following values in binary notation:...Ch. 1.5 - Perform the following additions in binary...Ch. 1.6 - Convert each of the following twos complement...Ch. 1.6 - Prob. 2QECh. 1.6 - Suppose the following bit patterns represent...Ch. 1.6 - Suppose a machine stores numbers in twos...Ch. 1.6 - In the following problems, each bit pattern...Ch. 1.6 - Prob. 6QECh. 1.6 - Prob. 7QECh. 1.6 - Prob. 8QECh. 1.6 - Prob. 9QECh. 1.6 - Prob. 10QECh. 1.6 - Prob. 11QECh. 1.7 - Prob. 1QECh. 1.7 - Prob. 3QECh. 1.7 - Prob. 4QECh. 1.8 - What makes Python an interpreted programming...Ch. 1.8 - Write Python statements that print the following:...Ch. 1.8 - Write Python statements to make the following...Ch. 1.8 - Write a Python statement that given an existing...Ch. 1.9 - Prob. 1QECh. 1.9 - Prob. 2QECh. 1.9 - Prob. 3QECh. 1.9 - Prob. 4QECh. 1.9 - Prob. 5QECh. 1.9 - Prob. 6QECh. 1.9 - Prob. 7QECh. 1.10 - Prob. 1QECh. 1.10 - Could errors have occurred in a byte from Question...Ch. 1.10 - Prob. 3QECh. 1.10 - Prob. 4QECh. 1.10 - Prob. 5QECh. 1.10 - Prob. 6QECh. 1 - Determine the output of each of the following...Ch. 1 - a. What Boolean operation does the circuit...Ch. 1 - a. If we were to purchase a flip-flop circuit from...Ch. 1 - Assume that both of the inputs in the following...Ch. 1 - The following table represents the addresses and...Ch. 1 - How many cells can be in a computers main memory...Ch. 1 - Prob. 7CRPCh. 1 - Prob. 8CRPCh. 1 - Prob. 9CRPCh. 1 - Prob. 10CRPCh. 1 - Suppose a picture is represented on a display...Ch. 1 - Prob. 12CRPCh. 1 - Prob. 13CRPCh. 1 - If each sector on a magnetic disk contains 1024...Ch. 1 - How many bytes of storage space would be required...Ch. 1 - Prob. 16CRPCh. 1 - Prob. 17CRPCh. 1 - Suppose a typist could type 60 words per minute...Ch. 1 - Prob. 19CRPCh. 1 - Prob. 20CRPCh. 1 - Prob. 21CRPCh. 1 - Prob. 22CRPCh. 1 - Prob. 23CRPCh. 1 - Prob. 24CRPCh. 1 - Prob. 25CRPCh. 1 - Prob. 26CRPCh. 1 - Prob. 27CRPCh. 1 - Prob. 28CRPCh. 1 - Prob. 29CRPCh. 1 - Prob. 30CRPCh. 1 - Prob. 31CRPCh. 1 - Prob. 32CRPCh. 1 - Prob. 33CRPCh. 1 - Prob. 34CRPCh. 1 - Prob. 35CRPCh. 1 - Prob. 36CRPCh. 1 - Prob. 37CRPCh. 1 - Prob. 38CRPCh. 1 - Prob. 39CRPCh. 1 - Prob. 40CRPCh. 1 - Prob. 41CRPCh. 1 - Prob. 42CRPCh. 1 - Prob. 43CRPCh. 1 - Prob. 44CRPCh. 1 - Prob. 45CRPCh. 1 - What would be the hexadecimal representation of...Ch. 1 - Prob. 47CRPCh. 1 - Prob. 48CRPCh. 1 - Prob. 49CRPCh. 1 - Prob. 50CRPCh. 1 - Prob. 51CRPCh. 1 - Prob. 52CRPCh. 1 - Prob. 53CRPCh. 1 - Prob. 54CRPCh. 1 - Prob. 55CRPCh. 1 - Prob. 56CRPCh. 1 - Prob. 57CRPCh. 1 - Prob. 58CRPCh. 1 - Write and test a Python script that, given a...Ch. 1 - Prob. 61CRPCh. 1 - Prob. 2SICh. 1 - Prob. 3SICh. 1 - Prob. 4SICh. 1 - Prob. 5SICh. 1 - Prob. 6SICh. 1 - Prob. 7SI
Knowledge Booster
Similar questions
- Describe the concept of two's complement representation for signed integers in binary. How does it handle negative numbers in computer systems?arrow_forwardBriefly explain why two’s complement is the best format for representing signed integers in a computer.arrow_forwardIf an unsigned 8-bit integer were to be extended to a 16-bit one, the first 8 most significant bits (MSB) would be filled with ones, creating a signed 16-bit representation. Pick a solution from these two options: Is it true or false that...?arrow_forward
- There are multiple schemes that can be used to represent integers in binary, including 1. Assuming that we use 12 bits to represent a number in two's complement scheme, answer the following questions: (a) What are the largest and smallest integers that can be represented? (b) How many different values can be represented? (c) How to represent 2710? (d) How to represent -4510 if supported?arrow_forwardIn 8-bit binary floating point, how do you write 6.75 as a mantissa and an exponent?arrow_forwardHelp me answer these please 11. Binary and floating-point arithmetic: Solve each binary operation with detailed, step-by-step explanation. Note that for each of the following operations, first you need to convert the decimal numbers (represented in base 10) into their binary representation. Explain where carry bit is generated and how. a. Binary multiplication of (12 x 9). b. Binary subtraction of (7 – 15). c. Binary division of (12 / 3). d. Convert (1425.75)10 into a 32-bit Single Precision IEEE floating-point binary number. Use the example in the .ppt slidesarrow_forward
- Assume we are using the simple model for floating-point representation discussed in the class (the representation uses a 14-bit format, 5 bits for the exponent with an Excess-M, a significand of 8 bits, and a single sign bit for the number): Convert -43.0735 to the floating-point binary representation. (Remember we learned "implied one" format in the lecture)arrow_forwardASCII Codes can be helpful to find binary code of different decimal numbers and alphabets etc. You have to consider 65 and its equivalent code of 16 bits will be considered for bit sequence and a divisor for CRC. Follow this process; first 8 bits will be used for data while next 4 bits will be used for divisor (if there are 4 zeroes in your case then replace with 1001), neglect last 4 bits. Also check your answer.arrow_forwardConsider a 6-bit two’s complement representation. Fill in the box with question mark "?" in the following table. You don't need to care about "n/a." Number Binary Representation TMin + TMin ? Please input the binary representation in this format xxxxxx. For example, if the answer is 010010, please input 010010.arrow_forward
- I need the answer as soon as possiblearrow_forwardshow all stepsarrow_forwardQuestion 7 Assume we are using the simple model for floating-point representation as given in this book (the representation uses a 14-bit format, 5 bits for the exponent with a bias of 15, a normalized mantissa of 8 bits, and a single sign bit for the number). 01011011001000 + 00111010000000 = ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education