Computer Science: An Overview (12th Edition)
12th Edition
ISBN: 9780133760064
Author: Glenn Brookshear, Dennis Brylow
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Expert Solution & Answer
Chapter 1.4, Problem 4QE
Explanation of Solution
- “LeD or incandescent bulb”, is the device that can have two states, ON and OFF.
- When the current flows through the circuit, the bulb is ON and it indicates a high state.
- When the switch is OFF, there is no current in the circuit and the device is OFF and it indicates a low state.
Representation of letter “b” in ASCII code using the device:
- Represent the letter “b” in binary code.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Describe a device from everyday life that can be in either of two states, such as a flag on a flagpole that is either up or down. Assign the symbol 1 to one of the states and 0 to the other, and show how the ASCII representation for the letter b would appear when stored with such bits.
Please explain
Consider the decimal number (-48.325). Write down binaryrepresentation of this number using the IEEE 745 single precision format. Clearly specify “Sign”, “Exponent” and “Mantissa” fields of the single precisionrepresentation.
Chapter 1 Solutions
Computer Science: An Overview (12th Edition)
Ch. 1.1 - What input bit patterns will cause the following...Ch. 1.1 - In the text, we claimed that placing a 1 on the...Ch. 1.1 - Assuming that both inputs to the flip-flop in...Ch. 1.1 - a. If the output of an AND gate is passed through...Ch. 1.1 - Prob. 5QECh. 1.1 - Prob. 6QECh. 1.2 - If the memory cell whose address is 5 contains the...Ch. 1.2 - Prob. 2QECh. 1.2 - How many bits would be in the memory of a computer...Ch. 1.3 - Prob. 1QE
Ch. 1.3 - Prob. 2QECh. 1.3 - Prob. 3QECh. 1.3 - Prob. 4QECh. 1.3 - Prob. 5QECh. 1.3 - Prob. 6QECh. 1.4 - Here is a message encoded in ASCII using 8 bits...Ch. 1.4 - In the ASCII code, what is the relationship...Ch. 1.4 - Prob. 3QECh. 1.4 - Prob. 4QECh. 1.4 - Convert each of the following binary...Ch. 1.4 - Prob. 6QECh. 1.4 - What is the largest numeric value that could be...Ch. 1.4 - An alternative to hexadecimal notation for...Ch. 1.4 - What is an advantage of representing images via...Ch. 1.4 - Prob. 10QECh. 1.5 - Convert each of the following binary...Ch. 1.5 - Convert each of the following base ten...Ch. 1.5 - Convert each of the following binary...Ch. 1.5 - Express the following values in binary notation:...Ch. 1.5 - Perform the following additions in binary...Ch. 1.6 - Convert each of the following twos complement...Ch. 1.6 - Prob. 2QECh. 1.6 - Suppose the following bit patterns represent...Ch. 1.6 - Suppose a machine stores numbers in twos...Ch. 1.6 - In the following problems, each bit pattern...Ch. 1.6 - Prob. 6QECh. 1.6 - Prob. 7QECh. 1.6 - Prob. 8QECh. 1.6 - Prob. 9QECh. 1.6 - Prob. 10QECh. 1.6 - Prob. 11QECh. 1.7 - Prob. 1QECh. 1.7 - Prob. 3QECh. 1.7 - Prob. 4QECh. 1.8 - What makes Python an interpreted programming...Ch. 1.8 - Write Python statements that print the following:...Ch. 1.8 - Write Python statements to make the following...Ch. 1.8 - Write a Python statement that given an existing...Ch. 1.9 - Prob. 1QECh. 1.9 - Prob. 2QECh. 1.9 - Prob. 3QECh. 1.9 - Prob. 4QECh. 1.9 - Prob. 5QECh. 1.9 - Prob. 6QECh. 1.9 - Prob. 7QECh. 1.10 - Prob. 1QECh. 1.10 - Could errors have occurred in a byte from Question...Ch. 1.10 - Prob. 3QECh. 1.10 - Prob. 4QECh. 1.10 - Prob. 5QECh. 1.10 - Prob. 6QECh. 1 - Determine the output of each of the following...Ch. 1 - a. What Boolean operation does the circuit...Ch. 1 - a. If we were to purchase a flip-flop circuit from...Ch. 1 - Assume that both of the inputs in the following...Ch. 1 - The following table represents the addresses and...Ch. 1 - How many cells can be in a computers main memory...Ch. 1 - Prob. 7CRPCh. 1 - Prob. 8CRPCh. 1 - Prob. 9CRPCh. 1 - Prob. 10CRPCh. 1 - Suppose a picture is represented on a display...Ch. 1 - Prob. 12CRPCh. 1 - Prob. 13CRPCh. 1 - If each sector on a magnetic disk contains 1024...Ch. 1 - How many bytes of storage space would be required...Ch. 1 - Prob. 16CRPCh. 1 - Prob. 17CRPCh. 1 - Suppose a typist could type 60 words per minute...Ch. 1 - Prob. 19CRPCh. 1 - Prob. 20CRPCh. 1 - Prob. 21CRPCh. 1 - Prob. 22CRPCh. 1 - Prob. 23CRPCh. 1 - Prob. 24CRPCh. 1 - Prob. 25CRPCh. 1 - Prob. 26CRPCh. 1 - Prob. 27CRPCh. 1 - Prob. 28CRPCh. 1 - Prob. 29CRPCh. 1 - Prob. 30CRPCh. 1 - Prob. 31CRPCh. 1 - Prob. 32CRPCh. 1 - Prob. 33CRPCh. 1 - Prob. 34CRPCh. 1 - Prob. 35CRPCh. 1 - Prob. 36CRPCh. 1 - Prob. 37CRPCh. 1 - Prob. 38CRPCh. 1 - Prob. 39CRPCh. 1 - Prob. 40CRPCh. 1 - Prob. 41CRPCh. 1 - Prob. 42CRPCh. 1 - Prob. 43CRPCh. 1 - Prob. 44CRPCh. 1 - Prob. 45CRPCh. 1 - What would be the hexadecimal representation of...Ch. 1 - Prob. 47CRPCh. 1 - Prob. 48CRPCh. 1 - Prob. 49CRPCh. 1 - Prob. 50CRPCh. 1 - Prob. 51CRPCh. 1 - Prob. 52CRPCh. 1 - Prob. 53CRPCh. 1 - Prob. 54CRPCh. 1 - Prob. 55CRPCh. 1 - Prob. 56CRPCh. 1 - Prob. 57CRPCh. 1 - Prob. 58CRPCh. 1 - Write and test a Python script that, given a...Ch. 1 - Prob. 61CRPCh. 1 - Prob. 2SICh. 1 - Prob. 3SICh. 1 - Prob. 4SICh. 1 - Prob. 5SICh. 1 - Prob. 6SICh. 1 - Prob. 7SI
Knowledge Booster
Similar questions
- Given the following expression, Z = [(G +E) * A] – [H * (A + S / L)] i. Convert the expression to postfix notation.arrow_forwardThe following is a quantity represented in base-8 (octal). What is its representation in base-10 (decimal)? (The right-most digit is still the one's place, the next is the 8s place, ...) 772arrow_forwardConsider a new floating point representation, which we will call here the CMPT215Float16 representation. The CMPT215Float16 representation follows the IEEE 754 binary floating point standard, but with smaller-sized fields for the exponent and fraction. In particular, CMPT215Float16 numbers have a 1-bit sign field, followed by a 7-bit exponent field (in biased notation, with a bias of only 63 because of the smaller size of this field), followed by an 8-bit fraction field. Give, in decimal, the quantity represented by the following CMPT215Float16 floating point value: 0100001110100000.arrow_forward
- Please help me solve this problem with kind explanations :) We are running programs on a machine where values of type int have a 32-bit two's complement representation. Values of type float use the 32-bit IEEE format, and values of type double use the 64-bit IEEE format. We generate arbitrary integer values x, y, and z, and convert them to values of type double as follow: /* Create some arbitrary values */ int x = random(); int y = random(); int z = random(); /* Convert to double */ double dx = (double) x; double dy = (double) y; double dz = (double) z; For each of the following C expressions, you are to indicate whether or not the expression always yields 1. If it always yields 1, describe the underlying mathematical principles. Otherwise, give an example of arguments that make it yield 0. Note that you cannot use an IA32 machine running GCC to test your answers, since it would use the 80-bit extended-precision representation for both float and double. A. (double)(float) x == dx B. dx…arrow_forwardTwo friends are exchanging messages through regular post mail. They don’t want anyone to understand their messages in case anyone read them. The messages are in the form of an array of characters, where each character has a numeric value as illustrated in the below lookup table.arrow_forwardSuppose that we use the floating-point format with 12 decimal digits, SEEEMMMMMMMM, to rep- resent a real number, where S is the digit to represent the sign of the mantissa (use 0 for pos- itive and 5 for negative), EEE are the 3 digits to represent the exponent in excess-500 format, MMMMMMMM are the 8 digits to represent the magnitude of the mantissa, and the decimal point of the mantissa is right to the left of MMMMMMMM (i.e., SEEEMMMMMMMM representing the real number +0.MMMMMMMM × 10EEE-500) What are the smallest positive number and the largest positive number that can be represented in this format? Write them in exponential notation.arrow_forward
- Suppose that we use the floating-point format with 12 decimal digits, SEEEMMMMMMMM, to rep- resent a real number, where S is the digit to represent the sign of the mantissa (use 0 for pos- itive and 5 for negative), EEE are the 3 digits to represent the exponent in excess-500 format, MMMMMMMM are the 8 digits to represent the magnitude of the mantissa, and the decimal point of the mantissa is right to the left of MMMMMMMM (i.e., SEEEMMMMMMMM representing the real number +0.MMMMMMMM × 10EEE-500.) When you use this format to represent a real number, in which scenario an overflow will occur and in which scenarios an underflow may occur?arrow_forwarddo the collection as a single precision floating point format and show how the result is represented in memory, in hexadecimal format.42.5 + 18.25arrow_forwardConsider a 16-bit binary floating point number representation system: + | SE E E E E E m m т m m m m m m The first bit of the exponent is dedicated to its sign. Assume that the mantissa must start with a '1'. Use this system to answer the following question What is the smallest (magnitude) number that can be represented with this system?arrow_forward
- Write a PLI program that reads in pairs of points on a Cartesian coordinate system and classifies them according to the quadrant in which they lie. Make sure you take care of the possibility that one of the pairs lies on the axes of the coordinate system.arrow_forwardBriefly describe One’s Complement and Two’s Complement integer representation on a computer with integer objects of length n bits. List one pro and one con for either method.arrow_forwardConvert ((A – (B + C)) * D) ↑ (E + F) infix expression to postfix.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education