The pH of a 0.045- M solution of a weak base is 9.88 at 25 o C . The K b of the given base has to be calculated Concept Information: Strong base and weak base: Strong base dissociates into its constituent ions fully. It produces more of hydroxide ions while dissolved in water. Weak bases partially dissociates into its constituent ions. According to Bronsted-Lowry, strong base is a good proton acceptor whereas weak base is a poor proton acceptor Since, the ionization of a weak base is incomplete; it is treated in the same way as the ionization of a weak acid. The ionization of a weak base B is given by the below equation. B (aq) +H 2 O (l) → HB + (aq) +OH - (aq) The equilibrium expression for the ionization of weak base B will be, K b = [ HB + ] [ OH - ] [ B ] Where, K b is base ionization constant, [ OH − ] is concentration of hydroxide ion [ HB + ] is concentration of conjugate acid [ B] is concentration of the base pOH definition: The pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion [OH - ] concentration. pOH scale is analogous to pH scale. pOH = -log[OH - ] Relationship between pH and pOH pOH is similar to pH . The only difference is that in pOH the concentration of hydroxide ion is used as a scale while in pH , the concentration of hydronium ion is used. The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation, pH + pOH = 14, at 25 o C As pOH and pH are opposite scale, the total of both has to be equal to 14. To Calculate: The K b of the given weak base
The pH of a 0.045- M solution of a weak base is 9.88 at 25 o C . The K b of the given base has to be calculated Concept Information: Strong base and weak base: Strong base dissociates into its constituent ions fully. It produces more of hydroxide ions while dissolved in water. Weak bases partially dissociates into its constituent ions. According to Bronsted-Lowry, strong base is a good proton acceptor whereas weak base is a poor proton acceptor Since, the ionization of a weak base is incomplete; it is treated in the same way as the ionization of a weak acid. The ionization of a weak base B is given by the below equation. B (aq) +H 2 O (l) → HB + (aq) +OH - (aq) The equilibrium expression for the ionization of weak base B will be, K b = [ HB + ] [ OH - ] [ B ] Where, K b is base ionization constant, [ OH − ] is concentration of hydroxide ion [ HB + ] is concentration of conjugate acid [ B] is concentration of the base pOH definition: The pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion [OH - ] concentration. pOH scale is analogous to pH scale. pOH = -log[OH - ] Relationship between pH and pOH pOH is similar to pH . The only difference is that in pOH the concentration of hydroxide ion is used as a scale while in pH , the concentration of hydronium ion is used. The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation, pH + pOH = 14, at 25 o C As pOH and pH are opposite scale, the total of both has to be equal to 14. To Calculate: The K b of the given weak base
Solution Summary: The author explains that the pH of a 0.045- M solution of weak base is 9.88. Strong base produces more of hydroxide ions while dissolved in water, while weak bases partially dissociate into its constituent
The pH of a 0.045-M solution of a weak base is 9.88 at
25oC. The
Kb of the given base has to be calculated
Concept Information:
Strong base and weak base:
Strong base dissociates into its constituent ions fully. It produces more of hydroxide ions while dissolved in water. Weak bases partially dissociates into its constituent ions.
According to Bronsted-Lowry, strong base is a good proton acceptor whereas weak base is a poor proton acceptor
Since, the ionization of a weak base is incomplete; it is treated in the same way as the ionization of a weak acid.
The ionization of a weak base
B is given by the below equation.
B(aq)+H2O(l)→HB+(aq)+OH-(aq)
The equilibrium expression for the ionization of weak base
B will be,
Kb=[HB+][OH-][B]
Where,
Kb is base ionization constant,
[OH−] is concentration of hydroxide ion
[HB+] is concentration of conjugate acid
[B] is concentration of the base
pOHdefinition:
The
pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion
[OH-] concentration.
pOH scale is analogous to pH scale.
pOH=-log[OH-]
Relationship betweenpH andpOH
pOH is similar to
pH. The only difference is that in
pOH the concentration of hydroxide ion is used as a scale while in
pH, the concentration of hydronium ion is used.
The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation,
pH+pOH=14,at25oC
As
pOH and
pH are opposite scale, the total of both has to be equal to 14.
In a rotational Raman spectrum of a diatomic molecule it is correct to say that:a) anti-Stokes lines occur at frequencies higher than the excitatory oneb) Stokes lines occur at frequencies higher than the excitatory onec) Rayleigh scattering is not observedd) Rayleigh scattering corresponds to delta J = 0
Of the molecules: H2, N2, HCl, CO2, indicate which ones can give Raman vibration-rotation spectra:a) H2, N2 and HClb) H2, N2, HCl and CO2c) H2 and N2d) all of them
Can you please help me with drawing the Lewis structure of each molecular formula?I truly appreciate you!
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.