Using VSEPR theory, the geometry of the hydronium ion H 3 O + has to be predicted Concept Information: The shape of a molecule is predicted using Lewis structure and VSEPR ( valence-shell electron-pair repulsion ) model. The shape of the molecule depends on the number of electron domains available for the central atom of the molecule. The VSEPR model predicts that because these electron domains repel one another, they will arrange themselves to be as far apart as possible, thus minimizing the repulsive interactions between them. For a molecule of type AB x , where A is the central atom surrounded by x B atoms, x can have values of 2 to 6 and the molecules takes up the corresponding geometry To Predict: The geometry of hydronium ion H 3 O + using VSEPR
Using VSEPR theory, the geometry of the hydronium ion H 3 O + has to be predicted Concept Information: The shape of a molecule is predicted using Lewis structure and VSEPR ( valence-shell electron-pair repulsion ) model. The shape of the molecule depends on the number of electron domains available for the central atom of the molecule. The VSEPR model predicts that because these electron domains repel one another, they will arrange themselves to be as far apart as possible, thus minimizing the repulsive interactions between them. For a molecule of type AB x , where A is the central atom surrounded by x B atoms, x can have values of 2 to 6 and the molecules takes up the corresponding geometry To Predict: The geometry of hydronium ion H 3 O + using VSEPR
Solution Summary: The author explains that the geometry of the hydronium ion is predicted using Lewis structure and VSEPR (valence-shell electron-pair repulsion).
Using VSEPR theory, the geometry of the hydronium ion
H3O+ has to be predicted
Concept Information:
The shape of a molecule is predicted using Lewis structure and VSEPR (valence-shell electron-pair repulsion) model.
The shape of the molecule depends on the number of electron domains available for the central atom of the molecule.
The VSEPR model predicts that because these electron domains repel one another, they will arrange themselves to be as far apart as possible, thus minimizing the repulsive interactions between them.
For a molecule of type
ABx, where A is the central atom surrounded by x B atoms, x can have values of 2 to 6 and the molecules takes up the corresponding geometry
To Predict: The geometry of hydronium ion
H3O+ using VSEPR
(b)
Interpretation Introduction
Interpretation:
The reason why the species
H4O2+ does not exist has to explained; If it did exist, what would be its geometry has to be given.
Concept Information:
The shape of a molecule is predicted using Lewis structure and VSEPR (valence-shell electron-pair repulsion) model.
The shape of the molecule depends on the number of electron domains available for the central atom of the molecule.
The VSEPR model predicts that because these electron domains repel one another, they will arrange themselves to be as far apart as possible, thus minimizing the repulsive interactions between them.
For a molecule of type
ABx, where A is the central atom surrounded by x B atoms, x can have values of 2 to 6 and the molecules takes up the corresponding geometry
To Explain: The reason why the species
H4O2+ does not exist and if it did exist, what would be its geometry
For each reaction below, decide if the first stable organic product that forms in solution will create a new CC bond, and check
the appropriate box.
Next, for each reaction to which you answered "Yes" to in the table, draw this product in the drawing area below.
Note for advanced students: for this problem, don't worry if you think this product will continue to react under the current conditions
- just focus on the first stable product you expect to form in solution.
?
NH2
MgBr
Will the first product that forms in this reaction
create a new CC bond?
○ Yes
○ No
MgBr
?
Will the first product that forms in this reaction
create a new CC bond?
O Yes
O No
Click and drag to start drawing a
structure.
:☐
G
x
c
olo
Ar
HE
Predicting
As the lead product manager at OrganometALEKS Industries, you are trying to decide if the following reaction will make a molecule
with a new C - C bond as its major product:
H₂N
O
H
1.
?
2. H3O+
If this reaction will work, draw the major organic product or products you would expect in the drawing area below. If there's more
than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for
example to distinguish between major products with different stereochemistry.
0
If the major products of this reaction won't have a new CC bond, just check the box under the drawing area and leave it blank.
فا
Explanation
Check
Click and drag to start drawing a
structure.
Highlight the chirality (or stereogenic) center(s) in the given compound. A compound may have one or more stereogenic centers.
OH
OH
OH
OH
OH
OH
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
INTRODUCTION TO MOLECULAR QUANTUM MECHANICS -Valence bond theory - 1; Author: AGK Chemistry;https://www.youtube.com/watch?v=U8kPBPqDIwM;License: Standard YouTube License, CC-BY