Using VSEPR theory, the geometry of the hydronium ion H 3 O + has to be predicted Concept Information: The shape of a molecule is predicted using Lewis structure and VSEPR ( valence-shell electron-pair repulsion ) model. The shape of the molecule depends on the number of electron domains available for the central atom of the molecule. The VSEPR model predicts that because these electron domains repel one another, they will arrange themselves to be as far apart as possible, thus minimizing the repulsive interactions between them. For a molecule of type AB x , where A is the central atom surrounded by x B atoms, x can have values of 2 to 6 and the molecules takes up the corresponding geometry To Predict: The geometry of hydronium ion H 3 O + using VSEPR
Using VSEPR theory, the geometry of the hydronium ion H 3 O + has to be predicted Concept Information: The shape of a molecule is predicted using Lewis structure and VSEPR ( valence-shell electron-pair repulsion ) model. The shape of the molecule depends on the number of electron domains available for the central atom of the molecule. The VSEPR model predicts that because these electron domains repel one another, they will arrange themselves to be as far apart as possible, thus minimizing the repulsive interactions between them. For a molecule of type AB x , where A is the central atom surrounded by x B atoms, x can have values of 2 to 6 and the molecules takes up the corresponding geometry To Predict: The geometry of hydronium ion H 3 O + using VSEPR
Solution Summary: The author explains that the geometry of the hydronium ion is predicted using Lewis structure and VSEPR (valence-shell electron-pair repulsion).
Using VSEPR theory, the geometry of the hydronium ion
H3O+ has to be predicted
Concept Information:
The shape of a molecule is predicted using Lewis structure and VSEPR (valence-shell electron-pair repulsion) model.
The shape of the molecule depends on the number of electron domains available for the central atom of the molecule.
The VSEPR model predicts that because these electron domains repel one another, they will arrange themselves to be as far apart as possible, thus minimizing the repulsive interactions between them.
For a molecule of type
ABx, where A is the central atom surrounded by x B atoms, x can have values of 2 to 6 and the molecules takes up the corresponding geometry
To Predict: The geometry of hydronium ion
H3O+ using VSEPR
(b)
Interpretation Introduction
Interpretation:
The reason why the species
H4O2+ does not exist has to explained; If it did exist, what would be its geometry has to be given.
Concept Information:
The shape of a molecule is predicted using Lewis structure and VSEPR (valence-shell electron-pair repulsion) model.
The shape of the molecule depends on the number of electron domains available for the central atom of the molecule.
The VSEPR model predicts that because these electron domains repel one another, they will arrange themselves to be as far apart as possible, thus minimizing the repulsive interactions between them.
For a molecule of type
ABx, where A is the central atom surrounded by x B atoms, x can have values of 2 to 6 and the molecules takes up the corresponding geometry
To Explain: The reason why the species
H4O2+ does not exist and if it did exist, what would be its geometry
sketch the nature of the metal-alkylidene bonding interactions.
Part C
The perspective formula of isoleucine, an amino acid, is provided below.
HOOC
H₂NIC
H
川
CH3
CH,CH3
Draw the Newman projection in staggered conformation for isoleucine by viewing the molecule along the
C-2-C-3 bond.
1. Edit the Newman projection on the canvas.
2. Replace the appropriate hydrogens with the appropriate -CH3 or other groups.
3. If you need to start over, Undo or choose a Newman projection from the Templates toolbar
(bottom).
Important: Never delete the hydrogen atoms or bonds directly attached to the template, and do not move
them by dragging or dropping them. That will break the projections structures. Only replace them!
▸ View Available Hint(s)
0 2
H± 3D
EXP.
L
ד
י
CONT. 2
H
0
N
о
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
INTRODUCTION TO MOLECULAR QUANTUM MECHANICS -Valence bond theory - 1; Author: AGK Chemistry;https://www.youtube.com/watch?v=U8kPBPqDIwM;License: Standard YouTube License, CC-BY