The concentration of the given bases with a pH of 10.41 at 25 ∘ C has to be calculated Concept Information: Strong acids: In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium. Strong bases: Strong bases are formed from alkali metals and alkaline earth metals of Group IA and IIA respectively. Strong base dissociates into its constituent ions. For Group IA metal hydroxides, the hydroxide ion concentration is simply the initial concentration of the strong base For Group IIA metal hydroxides, the hydroxide ion concentration at equilibrium will be twice that of the initial concentration of strong base pOH definition The pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion [OH - ] concentration. pOH scale is analogous to pH scale. pOH = -log[OH - ] Relationship between pH and pOH pOH is similar to pH . The only difference is that in pOH the concentration of hydroxide ion is used as a scale while in pH , the concentration of hydronium ion is used. The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation, pH + pOH = 14, at 25 o C As pOH and pH are opposite scale, the total of both has to be equal to 14. To Calculate: The concentration of the given bases with a pH of 10.41 at 25 ∘ C
The concentration of the given bases with a pH of 10.41 at 25 ∘ C has to be calculated Concept Information: Strong acids: In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium. Strong bases: Strong bases are formed from alkali metals and alkaline earth metals of Group IA and IIA respectively. Strong base dissociates into its constituent ions. For Group IA metal hydroxides, the hydroxide ion concentration is simply the initial concentration of the strong base For Group IIA metal hydroxides, the hydroxide ion concentration at equilibrium will be twice that of the initial concentration of strong base pOH definition The pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion [OH - ] concentration. pOH scale is analogous to pH scale. pOH = -log[OH - ] Relationship between pH and pOH pOH is similar to pH . The only difference is that in pOH the concentration of hydroxide ion is used as a scale while in pH , the concentration of hydronium ion is used. The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation, pH + pOH = 14, at 25 o C As pOH and pH are opposite scale, the total of both has to be equal to 14. To Calculate: The concentration of the given bases with a pH of 10.41 at 25 ∘ C
Solution Summary: The author explains that the concentration of hydrogen ion or hydronium ions in strong acids is equal to the initial concentration at equilibrium.
The concentration of the given bases with a
pH of 10.41 at
25∘C has to be calculated
Concept Information:
Strong acids:
In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium.
Strong bases:
Strong bases are formed from alkali metals and alkaline earth metals of Group IA and IIA respectively.
Strong base dissociates into its constituent ions.
For Group IA metal hydroxides, the hydroxide ion concentration is simply the initial concentration of the strong base
For Group IIA metal hydroxides, the hydroxide ion concentration at equilibrium will be twice that of the initial concentration of strong base
pOH definition
The
pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion
[OH-] concentration.
pOH scale is analogous to pH scale.
pOH=-log[OH-]
Relationship between
pH and
pOH
pOH is similar to
pH. The only difference is that in
pOH the concentration of hydroxide ion is used as a scale while in
pH, the concentration of hydronium ion is used.
The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation,
pH+pOH=14,at25oC
As
pOH and
pH are opposite scale, the total of both has to be equal to 14.
To Calculate: The concentration of the given bases with a
pH of 10.41 at
25∘C
(b)
Interpretation Introduction
Interpretation:
The concentration of the given bases with a
pH of 10.41 at
25∘C has to be calculated
Concept Information:
Strong acids:
In strong acids, the ionization of acid is complete. This implies that the concentration of the hydrogen ion or hydronium ion will be equal to the initial concentration of the acid at equilibrium.
Strong bases:
Strong bases are formed from alkali metals and alkaline earth metals of Group IA and IIA respectively.
Strong base dissociates into its constituent ions.
For Group IA metal hydroxides, the hydroxide ion concentration is simply the initial concentration of the strong base
For Group IIA metal hydroxides, the hydroxide ion concentration at equilibrium will be twice that of the initial concentration of strong base
pOH definition
The
pOH of a solution is defined as the negative base-10 logarithm of the hydroxide ion
[OH-] concentration.
pOH scale is analogous to pH scale.
pOH=-log[OH-]
Relationship between
pH and
pOH
pOH is similar to
pH. The only difference is that in
pOH the concentration of hydroxide ion is used as a scale while in
pH, the concentration of hydronium ion is used.
The relationship between the hydronium ion concentration and the hydroxide ion concentration is given by the equation,
pH+pOH=14,at25oC
As
pOH and
pH are opposite scale, the total of both has to be equal to 14.
To Calculate: The concentration of the given bases with a
pH of 10.41 at
25∘C
These are synthesis questions. You need to show how the starting material can be converted into
the product(s) shown. You may use any reactions we have learned. Show all the reagents you
need. Show each molecule synthesized along the way and be sure to pay attention to the
regiochemistry and stereochemistry preferences for each reaction. If a racemic molecule is made
along the way, you need to draw both enantiomers and label the mixture as "racemic".
All of the carbon atoms of the products must come from the starting material!
?
H
H
Q5: Draw every stereoisomer for 1-bromo-2-chloro-1,2-difluorocyclopentane. Clearly show
stereochemistry by drawing the wedge-and-dashed bonds. Describe the relationship
between each pair of the stereoisomers you have drawn.
Classify each pair of molecules according to whether or not they can participate in hydrogen bonding with one another.
Participate in hydrogen bonding
CH3COCH3 and CH3COCH2CH3
H2O and (CH3CH2)2CO
CH3COCH3 and CH₂ CHO
Answer Bank
Do not participate in hydrogen bonding
CH3CH2OH and HCHO
CH3COCH2CH3 and CH3OH
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell