The original molarity of the given solution whose K a is 3.5 × 10 − 5 and pH is 5.26 at 25 ∘ C has to be calculated Concept Information: Acid ionization constant K a : Acids ionize in water. Strong acids ionize completely whereas weak acids ionize to some limited extent. The degree to which a weak acid ionizes depends on the concentration of the acid and the equilibrium constant for the ionization. The ionization of a weak acid HA can be given as follows, HA (aq) → H + (aq) +A - (aq) The equilibrium expression for the above reaction is given below. K a = [ H + ][A - ] [ HA] Where, K a is acid ionization constant, [ H + ] is concentration of hydrogen ion [ A - ] is concentration of acid anion [ HA] is concentration of the acid pH definition: The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale. The pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration. pH = -log[H + ] To Calculate: The molarity of the given acid solution whose K a is 3.5 × 10 − 5 and pH is 5.26 at 25 ∘ C
The original molarity of the given solution whose K a is 3.5 × 10 − 5 and pH is 5.26 at 25 ∘ C has to be calculated Concept Information: Acid ionization constant K a : Acids ionize in water. Strong acids ionize completely whereas weak acids ionize to some limited extent. The degree to which a weak acid ionizes depends on the concentration of the acid and the equilibrium constant for the ionization. The ionization of a weak acid HA can be given as follows, HA (aq) → H + (aq) +A - (aq) The equilibrium expression for the above reaction is given below. K a = [ H + ][A - ] [ HA] Where, K a is acid ionization constant, [ H + ] is concentration of hydrogen ion [ A - ] is concentration of acid anion [ HA] is concentration of the acid pH definition: The concentration of hydrogen ion is measured using pH scale. The acidity of aqueous solution is expressed by pH scale. The pH of a solution is defined as the negative base-10 logarithm of the hydrogen or hydronium ion concentration. pH = -log[H + ] To Calculate: The molarity of the given acid solution whose K a is 3.5 × 10 − 5 and pH is 5.26 at 25 ∘ C
Solution Summary: The author explains that the molarity of a given solution is determined by the acid ionization constant and the equilibrium constant.
Imagine an electrochemical cell based on these two half reactions with electrolyte concentrations as given below:
Oxidation: Pb(s) → Pb2+(aq, 0.10 M) + 2 e–
Reduction: MnO4–(aq, 1.50 M) + 4 H+(aq, 2.0 M) + 3 e– → MnO2(s) + 2 H2O(l)
Calculate Ecell (assuming temperature is standard 25 °C).
: ☐
+
Draw the Fischer projection of the most common naturally-occurring form of aspartate, with the acid group at the top and the side chain at the bottom.
Important: be sure your structure shows the molecule as it would exist at physiological pH.
Click and drag to start drawing a
structure.
✓
For a silver-silver chloride electrode, the following potentials are observed:
E°cell = 0.222 V and E(saturated KCl) = 0.197 V
Use this information to find the [Cl–] (technically it’s the activity of Cl– that’s relevant here, but we’ll just call it “concentration” for simplicity) in saturated KCl.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.