Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 16, Problem 16.44E
Interpretation Introduction
Interpretation:
The value of
Concept introduction:
Spectroscopy based on the splitting of
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Calculate the energy separation between the spin states of an electron in a magnetic field of 0.250 T.
3 Calculate the frequencies and wavelengths for the rotational transition J = 0 → J = 1 and
J = 4 → J = 5 for the HCl molecule. The internuclear distance is Re = 0.12745 nm. What is the
frequency shift between the two isotopomers H35Cl and H37Cl for the two transitions?
Is the bond length in 1HCl the same as that in 2HCl? The wavenumbers of the J = 1 ← 0 rotational transitions for 1H35Cl and 2H35Cl are 20.8784 and 10.7840 cm–1, respectively. Accurate atomic masses are 1.007 825mu and 2.0140mu for 1H and 2H, respectively. The mass of 35Cl is 34.968 85mu. Based on this information alone, can you conclude that the bond lengths are the same or different in the two molecules?
Chapter 16 Solutions
Physical Chemistry
Ch. 16 - Prob. 16.1ECh. 16 - Prob. 16.2ECh. 16 - Prob. 16.3ECh. 16 - Prob. 16.4ECh. 16 - Prob. 16.5ECh. 16 - Prob. 16.6ECh. 16 - Prob. 16.7ECh. 16 - Prob. 16.8ECh. 16 - Prob. 16.9ECh. 16 - Prob. 16.10E
Ch. 16 - Prob. 16.11ECh. 16 - Prob. 16.12ECh. 16 - Prob. 16.13ECh. 16 - Prob. 16.14ECh. 16 - Prob. 16.15ECh. 16 - Prob. 16.16ECh. 16 - Prob. 16.17ECh. 16 - Prob. 16.18ECh. 16 - Prob. 16.19ECh. 16 - Prob. 16.20ECh. 16 - Prob. 16.21ECh. 16 - Prob. 16.22ECh. 16 - Prob. 16.23ECh. 16 - Prob. 16.24ECh. 16 - Prob. 16.25ECh. 16 - Prob. 16.26ECh. 16 - Prob. 16.27ECh. 16 - Prob. 16.28ECh. 16 - Prob. 16.29ECh. 16 - Prob. 16.30ECh. 16 - Prob. 16.31ECh. 16 - Prob. 16.32ECh. 16 - Prob. 16.33ECh. 16 - Prob. 16.34ECh. 16 - Prob. 16.35ECh. 16 - Prob. 16.36ECh. 16 - Prob. 16.37ECh. 16 - Prob. 16.38ECh. 16 - Prob. 16.39ECh. 16 - Prob. 16.40ECh. 16 - Prob. 16.41ECh. 16 - Prob. 16.42ECh. 16 - Prob. 16.43ECh. 16 - Prob. 16.44ECh. 16 - Prob. 16.45ECh. 16 - a The structure of 2 chloroethanol is usually...Ch. 16 - Prob. 16.47ECh. 16 - Prob. 16.48ECh. 16 - Prob. 16.49ECh. 16 - Prob. 16.50ECh. 16 - Prob. 16.51ECh. 16 - Prob. 16.52ECh. 16 - Prob. 16.53ECh. 16 - Prob. 16.54ECh. 16 - Prob. 16.55ECh. 16 - Prob. 16.56ECh. 16 - A microwave oven emits radiation having a...
Knowledge Booster
Similar questions
- What is the physical explanation of the difference between a particle having the 3-D rotational wavefunction 3,2 and an identical particle having the wavefunction 3,2?arrow_forwardAssume that the states of the π electrons of a conjugated molecule can be approximated by the wavefunctions of a particle in a one-dimensional box, and that the magnitude of the dipole moment can be related to the displacement along this length by μ = −ex. Show that the transition probability for the transition n = 1 → n = 2 is non-zero, whereas that for n = 1 → n = 3 is zero. Hints: The following relation will be useful: sin x sin y = 1/2cos(x − y) − 1/2cos(x + y). Relevant integrals are given in the Resource section.arrow_forwardCalculate the value of ml for a proton constrained to rotate in a circle of radius 100 pm around a fixed point given that the rotational energy is equal to the classical average energy at 25 degrees C. (Mass of a proton = 1.6726 x 10^-27 kg, classical average energy=1/2kBT, where kBT is Boltzman constant = 1.30 x 10^ -23 J K^-1, and T is the temperature.)arrow_forward
- What are the possible values of angular momentum along the z-axis ħ² (11) The quantized energies of the rigid rotor are given by E, = 27 J(J +1)\ 21 If J = 2, what are possible values of MJarrow_forwardUsing the Boltzmann’s law, show that, for a spin-1/2 nucleus at thermal equilibrium at temperature T in a magnetic field Bo, the probabilities of finding it in the a and ß states are: yħBo e kT 1 yhBo 1+е kт Pa ; Pg : yhBo 1+е kTarrow_forwardA rotating diatomic molecule absorbs radiation and has moment of inertia, I, equal to 1.00 x 10-46 kg m², a. which is the frequency of radiation when the molecule undergoes a transition from J = 4 to J=3?arrow_forward
- 10arrow_forwardFind the ratio of the populations of the two spin states of protons in a magnetic field of 4.6973 T at 25°C. gp = 5.5857 UN = 5.0508 x 10-27 J/Tarrow_forwardThe Carbon monoxide molecule, CO, has an energy difference of 4.77 x 10 -4 eV. The wavelength of the transition from l=0 to l=1 rotation levels is 2.6 mm. Determine the bond length r0 of the CO molecule in nanometers with three decimal places.arrow_forward
- Calculate the minimum excitation energy (i.e. the difference in energy between the first excited state and the ground state) of a proton constrained to rotate in a circle of radius 100 pm around a fixed point.arrow_forward4. A hydrogen atom is in an excited 4f state in an external magnetic field |B| = 1.75 T. Ignoring magnetic spin effects (i.e., ignoring just the effect of ms): what is the difference in energy between the greatest possible energy and least possible energy of the atom?arrow_forwardE rotational is 2.777×10−20 Jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning