Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Question
Chapter 16, Problem 16.16E
Interpretation Introduction
Interpretation:
The energies for the microwave radiation frequencies used in ESR spectroscopy in terms of
Concept introduction:
In the ESR spectroscopy, the sample is exposed to the monochromatic microwave radiation and varying magnetic field. In the magnetic field, the splitting of spin occurs between the two spin states having different directions. These have different energies. The exposure of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Explain the concept of Fourier Transform IR spectroscopy ?
What is the effect of temperature on atomic spectroscopy?
Describe nuclear magnetic resonance spectroscopy .
Chapter 16 Solutions
Physical Chemistry
Ch. 16 - Prob. 16.1ECh. 16 - Prob. 16.2ECh. 16 - Prob. 16.3ECh. 16 - Prob. 16.4ECh. 16 - Prob. 16.5ECh. 16 - Prob. 16.6ECh. 16 - Prob. 16.7ECh. 16 - Prob. 16.8ECh. 16 - Prob. 16.9ECh. 16 - Prob. 16.10E
Ch. 16 - Prob. 16.11ECh. 16 - Prob. 16.12ECh. 16 - Prob. 16.13ECh. 16 - Prob. 16.14ECh. 16 - Prob. 16.15ECh. 16 - Prob. 16.16ECh. 16 - Prob. 16.17ECh. 16 - Prob. 16.18ECh. 16 - Prob. 16.19ECh. 16 - Prob. 16.20ECh. 16 - Prob. 16.21ECh. 16 - Prob. 16.22ECh. 16 - Prob. 16.23ECh. 16 - Prob. 16.24ECh. 16 - Prob. 16.25ECh. 16 - Prob. 16.26ECh. 16 - Prob. 16.27ECh. 16 - Prob. 16.28ECh. 16 - Prob. 16.29ECh. 16 - Prob. 16.30ECh. 16 - Prob. 16.31ECh. 16 - Prob. 16.32ECh. 16 - Prob. 16.33ECh. 16 - Prob. 16.34ECh. 16 - Prob. 16.35ECh. 16 - Prob. 16.36ECh. 16 - Prob. 16.37ECh. 16 - Prob. 16.38ECh. 16 - Prob. 16.39ECh. 16 - Prob. 16.40ECh. 16 - Prob. 16.41ECh. 16 - Prob. 16.42ECh. 16 - Prob. 16.43ECh. 16 - Prob. 16.44ECh. 16 - Prob. 16.45ECh. 16 - a The structure of 2 chloroethanol is usually...Ch. 16 - Prob. 16.47ECh. 16 - Prob. 16.48ECh. 16 - Prob. 16.49ECh. 16 - Prob. 16.50ECh. 16 - Prob. 16.51ECh. 16 - Prob. 16.52ECh. 16 - Prob. 16.53ECh. 16 - Prob. 16.54ECh. 16 - Prob. 16.55ECh. 16 - Prob. 16.56ECh. 16 - A microwave oven emits radiation having a...
Knowledge Booster
Similar questions
- What are the basic principles on which Atomic Fluorescence Spectroscopy is based?arrow_forwardExplain the principal work of atomic absorption spectroscopy? And how is it used for the determination of unknown heavy metals and other metals concentrations?arrow_forwardWrite down the approximate number of waves that appear on the FTIR spectra for the compounds Cyclohexanol and Butanoate Acid! analyze spectroscopy(Fourier-transform infrared spectroscopy)arrow_forward
- True or False: Emission spectroscopy can be used toidentify the components of paint’s pigmentsarrow_forwardWhy does fluorescence tend to be the mirror image of absorption?arrow_forwardExplain why H and He cannot be detected by Auger electron microscopy, How can you tell Auger peaks from photoelectron peaks in XPS Spectrumarrow_forward
- 5. Show that 'H nuclei with large chemical shifts relative to TMS have small shielding constants.arrow_forwardThe peak widths if the spectra of atomic UV-vis are different from the molecular UV-vis spectra. Explain why this occurs.arrow_forwardWhat are the transition frequencies for NMR and a vibrational spectroscopy, respectively? O radio frequency and infrared O radio frequency and x-ray microwave and infrared radio frequency and microwave O microwave and ultravioletarrow_forward
- Explain why or why not the fingerprint region of the IR spectrum cannot be predicted. Use the basis for IR absorption in your argument.arrow_forwardExplain how the signal is modulated in fluoresence spectroscopy to increase the signal to noise ratio of the measurement.arrow_forwardWhat is maximum depth of AES(Auger Electron Spectroscopy )?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
- Principles of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning