University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 16.2DQ
The hero of a western movie listens for an oncoming train by putting his ear to the track. Why does this method give an earlier warning of the approach of a train than just listening in the usual way?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
*84. Go A wireless transmitting microphone is mounted on a small plat-
form that can roll down an incline, dircetly away from a loudspeaker that
is mounted at the top of the incline. The loudspeaker broadcasts a tone
that has a fixed frequency of 1.000 x 10ʻ Hz, and the speed of sound is
343 m/s. At a time of 1.5 s following the release of the platform, the mi-
crophone detects a frequency of 9939 Hz. At a time of 3.5 s following the
release of the platform, the microphoñe detects a frequency of 9857 Hz.
What is the acceleration (assumed constant) of the platform?
Jack and Jill go for a walk along an abandoned railroad track. Jack puts one ear next to a rail, while Jill, 200 m away, taps on the rail with a stone. How much sooner does Jack hear the sound through the steel rail than through the air?
When the door of the Chapel of the Mausoleum in Hamilton, Scotland, is slammed shut, the last echo heard by someone standing just inside the door reportedly comes 15 s later. (a) If that echo were due to a single reflection off a wall opposite the door, how far from the door is the wall? (b) If, instead, the wall is 25.7 m away, how many reflections (back and forth) occur?
Chapter 16 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 16.1 - You use an electronic signal generator to produce...Ch. 16.2 - Mercury is 13.6 times denser than water. Based on...Ch. 16.3 - Prob. 16.3TYUCh. 16.4 - If you connect a hose to one end of a metal pipe...Ch. 16.5 - A stopped organ pipe of length L has a fundamental...Ch. 16.6 - Suppose that speaker A in Fig. 16.23 emits a...Ch. 16.7 - One tuning fork vibrates at 440 Hz, while a second...Ch. 16.8 - You are at an outdoor concert with a wind blowing...Ch. 16.9 - What would you hear if you were directly behind...Ch. 16 - Prob. 16.1DQ
Ch. 16 - The hero of a western movie listens for an...Ch. 16 - Would you expect the pitch (or frequency) of an...Ch. 16 - In most modern wind instruments the pitch is...Ch. 16 - Symphonic musicians always warm up their wind...Ch. 16 - In a popular and amusing science demonstration, a...Ch. 16 - Prob. 16.7DQCh. 16 - (a) Does a sound level of 0 dB mean that there is...Ch. 16 - Which has a more direct influence on the loudness...Ch. 16 - If the pressure amplitude of a sound wave is...Ch. 16 - Does the sound intensity level obey the...Ch. 16 - A small fraction of the energy in a sound wave is...Ch. 16 - A small metal band is slipped onto one of the...Ch. 16 - An organist in a cathedral plays a loud chord and...Ch. 16 - Prob. 16.15DQCh. 16 - Two vibrating tuning forks have identical...Ch. 16 - A large church has part of the organ in the front...Ch. 16 - A sound source and a listener are both at rest on...Ch. 16 - Can you think of circumstances in which a Doppler...Ch. 16 - Prob. 16.20DQCh. 16 - If you wait at a railroad crossing as a train...Ch. 16 - In case 1, a source of sound approaches a...Ch. 16 - Does an aircraft make a sonic boom only at the...Ch. 16 - If you are riding in a supersonic aircraft, what...Ch. 16 - Prob. 16.25DQCh. 16 - Example 16.1 (Section 16.1) showed that for sound...Ch. 16 - Prob. 16.2ECh. 16 - Consider a sound wave in air that has displacement...Ch. 16 - A loud factory machine produces sound having a...Ch. 16 - BIO Ultrasound and Infrasound. (a) Whale...Ch. 16 - (a) In a liquid with density 1300 kg/m3,...Ch. 16 - A submerged scuba diver hears the sound of a boat...Ch. 16 - Prob. 16.8ECh. 16 - An oscillator vibrating at 1250 Hz produces a...Ch. 16 - CALC (a) Show that the fractional change in the...Ch. 16 - A 60.0-m-long brass rod is struck at one end. A...Ch. 16 - Prob. 16.12ECh. 16 - BIO Energy Delivered to the Ear. Sound is detected...Ch. 16 - (a) By what factor must the sound intensity be...Ch. 16 - Eavesdropping! You are trying to overhear a juicy...Ch. 16 - BIO Human Hearing. A fan at a rock concert is 30 m...Ch. 16 - A sound wave in air at 20C has a frequency of 320...Ch. 16 - You live on a busy street, but as a music lover,...Ch. 16 - BIO For a person with normal hearing, the faintest...Ch. 16 - The intensity due to a number of independent sound...Ch. 16 - CP A babys mouth is 30 cm from her fathers ear and...Ch. 16 - The Sacramento City Council adopted a law to...Ch. 16 - CP At point A, 3.0 m from a small source of sound...Ch. 16 - (a) If two sounds differ by 5.00 dB, find the...Ch. 16 - Standing sound waves are produced in a pipe that...Ch. 16 - The fundamental frequency of a pipe that is open...Ch. 16 - Prob. 16.27ECh. 16 - BIO The Vocal Tract. Many opera singers (and some...Ch. 16 - The longest pipe found in most medium-size pipe...Ch. 16 - Singing in the Shower. A pipe closed at both ends...Ch. 16 - You blow across the open mouth of an empty test...Ch. 16 - Prob. 16.32ECh. 16 - A 75.0-cm-long wire of mass 5.625 g is tied at...Ch. 16 - Small speakers A and B are driven in phase at 725...Ch. 16 - Prob. 16.35ECh. 16 - Two loudspeakers, A and B (see Fig. E16.35), are...Ch. 16 - Two loudspeakers, A and B, are driven by the same...Ch. 16 - Two loudspeakers, A and B, are driven by the same...Ch. 16 - Two small stereo speakers are driven in step by...Ch. 16 - Two guitarists attempt to play the same note of...Ch. 16 - Prob. 16.41ECh. 16 - Adjusting Airplane Motors. The motors that drive...Ch. 16 - Two organ pipes, open at one end but closed at the...Ch. 16 - In Example 16.18 (Section 16.8), suppose the...Ch. 16 - On the planet Arrakis a male ornithoid is flying...Ch. 16 - A railroad train is traveling at 25.0 m/s in still...Ch. 16 - Two train whistles, A and B, each have a frequency...Ch. 16 - Moving Source vs. Moving Listener. (a) A sound...Ch. 16 - A swimming duck puddles the water with its feet...Ch. 16 - A railroad train is traveling at 30.0 m/s in still...Ch. 16 - A car alarm is emitting sound waves of frequency...Ch. 16 - While sitting in your car by the side of a country...Ch. 16 - Prob. 16.53ECh. 16 - The siren of a fire engine that is driving...Ch. 16 - A stationary police car emits a sound of frequency...Ch. 16 - How fast (as a percentage of light speed) would a...Ch. 16 - A jet plane flies overhead at Mach 1.70 and at a...Ch. 16 - The shock-wave cone created by a space shuttle at...Ch. 16 - A soprano and a bass are singing a duet. While the...Ch. 16 - CP The sound from a trumpet radiates uniformly in...Ch. 16 - Prob. 16.61PCh. 16 - CP A uniform 165-N bar is supported horizontally...Ch. 16 - An organ pipe has two successive harmonics with...Ch. 16 - Prob. 16.64PCh. 16 - Prob. 16.65PCh. 16 - A bat flies toward a wall, emitting a steady sound...Ch. 16 - The sound source of a ships sonar system operates...Ch. 16 - BIO Ultrasound in Medicine. A 2.00-MHZ sound wave...Ch. 16 - BIO Horseshoe bats (genus Rhinolophus) emit sounds...Ch. 16 - CP A police siren of frequency fsiren is attached...Ch. 16 - CP A turntable 1.50 m in diameter rotates at 75...Ch. 16 - DATA A long, closed cylindrical tank contains a...Ch. 16 - Prob. 16.73PCh. 16 - DATA Supernova! (a) Equation (16.30) can be...Ch. 16 - CALC Figure P16.75 shows the pressure fluctuation...Ch. 16 - CP Longitudinal Waves on a Spring. A long spring...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...Ch. 16 - BIO ULTRASOUND IMAGING. A typical ultrasound...
Additional Science Textbook Solutions
Find more solutions based on key concepts
13. A supply plane needs to drop a package of food to scientists working on a glacier in Greenland. The plane f...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
The Cosmic Perspective Fundamentals (2nd Edition)
The blanks in the given statement are to be filled.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Mechanics put a length of Pipe over the handle of a wrench to remove when trying to remove a very tight bolt. H...
College Physics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
how long microwave oven take to heat the water from 20° C to 80° C .
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Submarine A travels horizontally at 11.0 m/s through ocean water. It emits a sonar signal of frequency f = 5.27 103 Hz in the forward direction. Submarine B is in front of submarine A and traveling at 3.00 m/s relative to the water in the same direction as submarine A. A crewman in submarine B uses his equipment to detect the sound waves (pings) from submarine A. We wish to determine what is heard by the crewman in submarine B. (a) An observer on which submarine detects a frequency f as described by Equation 16.46? (b) In Equation 16.46, should the sign of vs be positive or negative? (c) In Equation 16.46, should the sign of vo be positive or negative? (d) In Equation 16.46, what speed of sound should be used? (e) Find the frequency of the sound detected by the crewman on submarine B.arrow_forwardA dolphin uses echo location to track a fish in the ocean. The speed of sound in the ocean is 1470 m/sec and it takes 0.500 seconds for the sound wave to echo back to the dolphin. How far away is the fish?arrow_forwardAn oceanic depth-sounding vessel sends a sonar of 0.100MHz towards the ocean floor. a) If sound travels at 1520m/s in seawater, what is the wavelength of this signal? b) If the return signal is received 6 seconds later, how deep is the ocean floor?arrow_forward
- Estimate the phase shift between the below two sinusoidal signals in degrees 10 as 00 05 10 0000 0.005 0010 0015 0.020 Time (sec) Select one: O 0.018 O TT 58 O 1.0arrow_forwardA bat flying at 10.0 m/s is chasing an insect flying in the same direction. The bat emits a 40.0 kHz chirp and receives back an echo at 40.2 kHz. How can you tell that the bat will catch the insect without performing any calculations?arrow_forwardSound waves entering human ear first pass through the auditory canal before reaching the eardrum. If a typical adult has an auditory canal of 2.5cm long and 7.0mm in diameter, suppose that when you listen to ordinary conversation, the intensity of sound waves is about 3.2 × 10^−6W/m^2; a) What is the average power delivered to the eardrum?arrow_forward
- A rescuer in an all-terrain vehicle (ATV) is tracking two injured hikers in the desert, each of whom has an emergency locator transmitter (ELT) stored in his backpack. The beacons give off radio signals at 121.5 MHz, in phase, and there is a receiver in the ATV that is tuned to that frequency. The speed of the radio waves is 3.00×108 m/s. The ATV is traveling due east, 2.00×102 m north of the hikers, and the hikers are 1.00×102 m apart. What is the spacing between the points at which the driver detects constructive interference between the two signals?arrow_forwardA physicist at a fireworks display times the lag between seeing an explosion and hearing its sound, and finds it to be 0.371 s. How far away in meters is the explosion if air temperature is 24.0°C and if you neglect the time taken for light to reach the physicist? Assume the speed of sound in 0°C air is 331 m/s. Type your answer.....arrow_forwardThe speed of light in air is approximately v = 3.00 × 108 m/s and the speed of light in glass is v = 2.00 × 108 m/s . A red laser with a wavelength of λ = 633.00 nm shines light incident of the glass, and some of the red light is transmitted to the glass. The frequency of the light is the same for the air and the glass. (a) What is the frequency of the light? (b) What is the wavelength of the light in the glass?arrow_forward
- The ionosphere is the ionized part of the upper layer of the earth's atmosphere. The air molecules there are ionized by solar radiation. This layer of the atmosphere is a fairly good conductor, and radio waves are often "bounced" off the bottom of the ionosphere back toward the earth, in a process called skip or skywave propagation. Due to these properties, the space between the surface of the earth and the bottom of the ionosphere acts like a closed wave guide that will exhibit resonance for very low frequencies. Resonance excitations in the cavity are caused by lightning strikes, which hit the earth about 50 to 100 times a second. These low atmospheric resonance frequencies are known as Schumann resonances, named after the physicist Winfried Otto Schumann, who first calculated them in 1952. There are several Schumann frequencies that occur in the low frequency background, which ranges from 3 to 60 Hz. The highest intensity resonance mode (called the fundamental) occurs at 7.83 Hz.…arrow_forwardThe ionosphere is the ionized part of the upper layer of the earth's atmosphere. The air molecules there are ionized by solar radiation. This layer of the atmosphere is a fairly good conductor, and radio waves are often “bounced” off the bottom of the ionosphere back toward the earth, in a process called skip or skywave propagation. Due to these properties, the space between the surface of the earth and the bottom of the ionosphere acts like a closed wave guide that will exhibit resonance for very low frequencies. Resonance excitations in the cavity are caused by lightning strikes, which hit the earth about 50 to 100 times a second. These low atmospheric resonance frequencies are known as Schumann resonances, named after the physicist Winfried Otto Schumann, who first calculated them in 1952. There are several Schumann frequencies that occur in the low frequency background, which ranges from 3 to 60 Hz. The highest intensity resonance mode (called the fundamental) occurs at 7.83 Hz.…arrow_forwardThe ionosphere is the ionized part of the upper layer of the earth's atmosphere. The air molecules there are ionized by solar radiation. This layer of the atmosphere is a fairly good conductor, and radio waves are often "bounced" off the bottom of the ionosphere back toward the earth, in a process called skip or skywave propagation. Due to these properties, the space between the surface of the earth and the bottom of the ionosphere acts like a closed wave guide that will exhibit resonance for very low frequencies. Resonance excitations in the cavity are caused by lightning strikes, which hit the earth about 50 to 100 times a second. These low atmospheric resonance frequencies are known as Schumann resonances, named after the physicist Winfried Otto Schumann, who first calculated them in 1952. There are several Schumann frequencies that occur in the low frequency background, which ranges from 3 to 60 Hz. The highest intensity resonance mode (called the fundamental) occurs at 7.83 Hz.…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Supersonic Speed and Shock Waves; Author: AK LECTURES;https://www.youtube.com/watch?v=HfSSi3KJZB0;License: Standard YouTube License, CC-BY