
The mass fraction and the apparent molecular weight of the products and the mass of air required per unit mass of fuel burned.

Answer to Problem 38P
The mass fraction of carbon dioxide is
Explanation of Solution
Express the total mass of the coal when the ash is substituted.
Here, mass of ash is
Express the mass fraction of carbon.
Here, mass of carbon is
Express the mass fraction of hydrogen.
Here, mass of hydrogen is
Express the mass fraction of oxygen.
Here, mass of oxygen is
Express the mass fraction of nitrogen.
Here, mass of nitrogen is
Express the mass fraction of sulphur.
Here, mass of sulphur is
Express the number of moles of carbon.
Here, molar mass of carbon is
Express the number of moles of hydrogen.
Here, molar mass of hydrogen is
Express the number of moles of oxygen.
Here, molar mass of oxygen is
Express the number of moles of nitrogen.
Here, molar mass of nitrogen is
Express the number of moles of sulphur.
Here, molar mass of sulphur is
Express the total number of moles.
Express the mole fraction of carbon.
Express the mole fraction of hydrogen.
Express the mole fraction of oxygen.
Express the mole fraction of nitrogen.
Express the mole fraction of sulphur.
Express the total molar mass of the products.
Here, number of moles of carbon dioxide, carbon monoxide, water, sulphur dioxide, and nitrogen is
Express the mole fraction of carbon dioxide.
Here, molar mass of carbon dioxide is
Express the mole fraction of carbon monoxide.
Here, molar mass of carbon monoxide is
Express the mole fraction of water.
Here, molar mass of water is
Express the mole fraction of sulphur dioxide.
Here, molar mass of sulphur dioxide is
Express the mole fraction of nitrogen.
Here, molar mass of nitrogen is
Express the total number of moles of product.
Express the apparent molecular weight of the product gas.
Express the air-fuel mass ratio.
Conclusion:
Refer Table A-1, “molar mass, gas constant, and the critical point properties”, and write the molar masses.
Here, molar mass of air is
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Express the combustion equation.
Perform the species balancing:
Carbon balance:
Hydrogen balance:
Sulphur balance:
Oxygen balance:
Nitrogen balance:
Substitute
Refer Equation (XXVIII), and write the number of moles of products.
Refer Table A-1, “molar mass, gas constant, and the critical point properties”, and write the molar masses.
Substitute
Substitute
Hence, the mass fraction of carbon dioxide is
Substitute
Hence, the mass fraction of carbon monoxide is
Substitute
Hence, the mass fraction of water is
Substitute
Hence, the mass fraction of sulphur dioxide is
Substitute
Hence, the mass fraction of nitrogen is
Substitute
Substitute
Hence, the apparent molecular weight of the products is
Since each
Refer Equation (XXVIII), and write the number of moles of reactants.
Substitute
Hence, the mass of air required per unit mass of fuel burned is
Want to see more full solutions like this?
Chapter 15 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
- Water is condensing on a square plate (0.5 m x 0.5 m) placed verCcally. If the desired rate ofcondensaCon is 0.016 kJ/s, determine the necessary surface temperature of the plate at atmosphericpressure. Assume the film temperature of 90 o C for evaluaCon of fluid properCes of water and thesurface temperature of 80 o C for the evaluaCon of modified latent heat of vaporizaConarrow_forwardWater at 20 o C enters the 4 cm-diameter, 14 m-long tube at a rate of 0.8 kg/s. The surfacetemperature of the pipe is maintained at 165 o Cby condensing geothermal stream at the shellside of the heat exchanger. Use water properCesat 85 o C for all calculaCons.(a) Show that the water flow is turbulent and thermally fully developed. (b) EsCmate the heat transfer coefficient for convecCve heat transfer from the pipe to the water. For a fully developed turbulent flow within the smooth pipe, the Nu number can becalculated from the following equaCon:(c) Calculate the exit temperature of the water. (d) Share your opinion on whether the use of water properties at 85°C is appropriate. Yes or No because:arrow_forwardConsider a hot automotive engine, which can beapproximated as a 0.5-m-high, 0.40-m-wide, and 0.8-m-long rectangular block. The bottom surface of the block isat a temperature of 100°C and has an emissivity of 0.95.The ambient air is at 20°C, and the road surface is at25°C. Determine the rate of heat transfer from the bottomsurface of the engine block by convection and radiationas the car travels at a velocity of 80 km/h. Assume theflow to be turbulent over the entire surface because of theconstant agitation of the engine block. a) Calculate convective heat transfer coefficient (h). b) Calculate the total heat transfer ratearrow_forward
- 8 mm- Top view -200 mm-180 mm- D B B 12 mm Side view B -8 mm D PROBLEM 1.56 In an alternative design for the structure of Prob. 1.55, a pin of 10-mm-diameter is to be used at A. Assuming that all other specifications remain unchanged, determine the allowable load P if an overall factor of safety of 3.0 is desired. PROBLEM 1.55 In the structure shown, an 8- mm-diameter pin is used at A, and 12-mm- diameter pins are used at B and D. Knowing that the ultimate shearing stress is 100 MPa at all connections and that the ultimate normal stress is 250 MPa in each of the two links joining B and D, determine the allowable load P if an overall factor of safety of 3.0 is desired. 20 mm P 8 mm- 12 mm- Front viewarrow_forwardWhere on the beam below is the Maximum Deflection likely to occur? 2P A "ती Point A Point B Point C Point D Point B or Point D ८ B पarrow_forwardSign in ||! PDE 321 proje X IMB321 PDF Lecture 5 X PDF Planet Ec X PDF Planet Ec X PDF PEABWX PDF meeting x PDF GSS Quo X PDF File C:/Users/KHULEKANI/Downloads/CIVE%20281%20Ass-2.pdf Draw | | All | a | Ask Copilot + 1 of 7 | D SOLUTION B PROBLEM 12.16 Block 4 has a mass of 40 kg, and block B has a mass of 8 kg. The coefficients of friction between all surfaces of contact are μ, = 0.20 H = 0.15. Knowing that P = 50 N→, determine (a) the acceleration of block B, (b) the tension in the cord. Constraint of cable: 2x + (x-x1) = x + x = constant. a+ag = 0, or aB = -a Assume that block A moves down and block B moves up. Block B: +/ΣF, = 0: NAB - WB cos 0 = 0 =ma: -T+μN + Wsin = We as g + ΣΕ We Eliminate NAB and aB- NAB B Nas HN UNA A NA -T+W(sin+μcоsе) = WB- g VD"M- g Block A: +/ΣF, = 0: NA-NAB - W₁cos + Psinė = 0 N₁ = N AB+W cose - Psin = (WB+WA)cose - Psinė ΣF=ma -T+Wsino-FAB-F + Pcos = CIVE 281 X + Ждал g Q | го || حالم ☑arrow_forward
- Where on the below beam is the Maxiumum Slope likely to occur? 120 Point A Point B Point C Point B or Point C B сarrow_forwardA very thin metallic sheet is placed between two wood plates of different thicknesses. Theplates are firmly pressed together and electricity is passed through the sheet. The exposed surfaces ofthe two plates lose heat to the ambient fluid by convection. Assume uniform heating at the interface.Neglect end effects and assume steady state.[a] Will the heat transfer through the two plates be the same? Explain.[b] Will the exposed surfaces be at the same temperature? Explainarrow_forwardDesign consideration requires that the surface of a small electronic package be maintained at atemperature not to exceed 82 o C. Noise constraints rule out the use of fans. The power dissipated inthe package is 35 watts and the surface area is 520 cm2 . The ambient temperature and surroundingwalls are assumed to be at 24 o C. The heat transfer coefficient is estimated to be 9.2 W/m2- oC andsurface emissivity is 0.7. Will the package dissipate the required power without violating designconstraints?arrow_forward
- Consider radiation from a small surface at 100 oC which is enclosed by a much larger surface at24 o C. Determine the percent increase in the radiation heat transfer if the temperature of the smallsurface is doubled.arrow_forwardA small electronic package with a surface area of 820 cm2 is placed in a room where the airtemperature is 28 o C. The heat transfer coefficient is 7.3 W/m2 - o C. You are asked to determine if it isjustified to neglect heat loss from the package by radiation. Assume a uniform surface temperature of78 o C and surface emissivity of 0.65 Assume further that room’s walls and ceiling are at a uniformtemperature of 16 o C.arrow_forwardA hollow metal sphere of outer radius or = 2 cm is heated internally with a variable output electricheater. The sphere loses heat from its surface by convection and radiation. The heat transfercoefficient is 22 W/ m2 - o C and surface emissivity is 0.92. The ambient fluid temperature is 20 o C andthe surroundings temperature is 14 oC. Construct a graph of the surface temperature corresponding toheating rates ranging from zero to 100 watts. Assume steady state. Use a simplified model forradiation exchange based on a small gray surface enclosed by a much larger surface at 14 o C.arrow_forward
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
