The mass fraction and the apparent molecular weight of the products and the mass of air required per unit mass of fuel burned.
Answer to Problem 38P
The mass fraction of carbon dioxide is
Explanation of Solution
Express the total mass of the coal when the ash is substituted.
Here, mass of ash is
Express the mass fraction of carbon.
Here, mass of carbon is
Express the mass fraction of hydrogen.
Here, mass of hydrogen is
Express the mass fraction of oxygen.
Here, mass of oxygen is
Express the mass fraction of nitrogen.
Here, mass of nitrogen is
Express the mass fraction of sulphur.
Here, mass of sulphur is
Express the number of moles of carbon.
Here, molar mass of carbon is
Express the number of moles of hydrogen.
Here, molar mass of hydrogen is
Express the number of moles of oxygen.
Here, molar mass of oxygen is
Express the number of moles of nitrogen.
Here, molar mass of nitrogen is
Express the number of moles of sulphur.
Here, molar mass of sulphur is
Express the total number of moles.
Express the mole fraction of carbon.
Express the mole fraction of hydrogen.
Express the mole fraction of oxygen.
Express the mole fraction of nitrogen.
Express the mole fraction of sulphur.
Express the total molar mass of the products.
Here, number of moles of carbon dioxide, carbon monoxide, water, sulphur dioxide, and nitrogen is
Express the mole fraction of carbon dioxide.
Here, molar mass of carbon dioxide is
Express the mole fraction of carbon monoxide.
Here, molar mass of carbon monoxide is
Express the mole fraction of water.
Here, molar mass of water is
Express the mole fraction of sulphur dioxide.
Here, molar mass of sulphur dioxide is
Express the mole fraction of nitrogen.
Here, molar mass of nitrogen is
Express the total number of moles of product.
Express the apparent molecular weight of the product gas.
Express the air-fuel mass ratio.
Conclusion:
Refer Table A-1, “molar mass, gas constant, and the critical point properties”, and write the molar masses.
Here, molar mass of air is
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Express the combustion equation.
Perform the species balancing:
Carbon balance:
Hydrogen balance:
Sulphur balance:
Oxygen balance:
Nitrogen balance:
Substitute
Refer Equation (XXVIII), and write the number of moles of products.
Refer Table A-1, “molar mass, gas constant, and the critical point properties”, and write the molar masses.
Substitute
Substitute
Hence, the mass fraction of carbon dioxide is
Substitute
Hence, the mass fraction of carbon monoxide is
Substitute
Hence, the mass fraction of water is
Substitute
Hence, the mass fraction of sulphur dioxide is
Substitute
Hence, the mass fraction of nitrogen is
Substitute
Substitute
Hence, the apparent molecular weight of the products is
Since each
Refer Equation (XXVIII), and write the number of moles of reactants.
Substitute
Hence, the mass of air required per unit mass of fuel burned is
Want to see more full solutions like this?
Chapter 15 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
- Liquid octane is burned completely with 75% excess air. Determine the air-fuel ratio for this combustion process.arrow_forwardEthane (C2H6) is burned with atmospheric air and the volumetric analysis of the dry products of combustion yields the following: 10% CO2, 1% CO, 3% 02 and 86% N2. Develop the combustion equation and determine (a) the percentage of the excess air (b) the air fuel ratio. (Solve for 100 kmol of dry products).arrow_forwardEthane (C2H6) is burned completely with 25% excess air. Show the combustion reaction of fuel and air. Determine the actual air-fuel ratio in kgair/kgfuel.arrow_forward
- H.W.3.5 Propylene (C3H6) is burned with 50 percent excess air during a combustion process. Assuming complete combustion and a total pressure of 105 kPa, determine (a) the air-fuel ratio and (b) the temperature at which the water vapor in the products will start condensing (c) the product analysis based on volume and mass.arrow_forwardComplete Combustion of methane with theoretical air (or 100% air) methane, C H, is to be burned with 100% air for complete combustion. The products of combustion or flue gas is at 105 kPa and 950 C Find (a) write the balanced mol equation (b) mass of theoretical air (c) mass of fuel (d) theoretical air-fuel ratio (e) volumetric analysis and molar analysis of wet flue gas (f) mass and volume of wet flue gas (g) gravimetric analysis of wet flue gas (h) dew point of wet flue gas (i) volumetric analysis and molar analysis of dry flue gas (j) mass and volume of dry flue gas (k) gravimetric analysis of dry flue gasarrow_forwardAliquid fuel has a composition (by volume) C2H6 16% and CH4 84%. It is burned with theoretical amount of air required for stoichiometric mixture. Calculate the molecular weight of the fuel and the fuel air ratio of the mixture. Also determine the composition (weight basis) of the product of combustion (consider that H20 does not condense). Ans:- 18.24 F/A = 0.059 ; CO₂ 15.7%; H₂O = 12% : N₂ =72.3%. ,arrow_forward
- Parrow_forward1 kmol C2H6 is burned with an unknown amount of air. At the end of combustion since it is known that there is 3 kmol free oxygen in the combustion products, the air fuel ratio and calculate the theoretical percentage of air used during this process.arrow_forwardAcetylene (C2H2) is burned with the stoichiometric amount of air during a combustion process. Assume complete combustion. Part A Determine the air-fuel ratio on a mass basis. Part B Determine the air-fuel ratio on a mole basis. Part C What-if scenario: What would the air to fuel ratio on a mass basis be if propene (C3H6) was burned instead of acetylene?arrow_forward
- n-Octane gas (C8H18) is burned with 80% excess air in a constant pressure burner. The air and fuel enter this burner steadily at standard conditions and the products of combustion leave at 217°C. Calculate the heat transfer, in kJ/kg fuel, during this combustion. C8H18 25°C 80% excess air 25°C Qout Combustion chamber P = 1 atm Products 217°Carrow_forwardPARTS A & B ( Justify correctly) Gaseous ethane C2H6 is burned at constant pressure P = 1atm. The reagents enter the reaction at 25°C, and the products are at 727°C. Determine the heat released by the system for ethane combustion with PART (a) the theoretical stechiometric amount of oxygen PART (b) the theoretical amount of air (air contains 3.76 kmol of nitrogen per 1 kmol of oxygen). In which case is the heat released by the system larger? Explain .arrow_forward2 PARTS ( A& B) solve carefully and Explain your reasoning Gaseous ethane C2H6 is burned at constant pressure P = 1atm. The reagents enter the reaction at 25°C, and the products are at 727°C. Determine the heat released by the system for ethane combustion with (a) the theoretical stechiometric amount of oxygen (b) the theoretical amount of air (air contains 3.76 kmol of nitrogen per 1 kmol of oxygen). In which case is the heat released by the system larger? Explain why.arrow_forward
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning