Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15.7, Problem 104P
If the attached cord is pulled down through the hole with a constant speed vr = 2 ft/s, determine how much time is required for the ball to reach a speed of 12 ft/s. How far r2 is the ball from the hole when this occurs? Neglect friction and the size of the ball.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The 2.0 kg block slides along a smooth (frictionless) plane with a speed of 2 m/s and then strikes an unstretched spring with a spring constant of 220N/m. Find the speed of the block in meters per second after the spring has compressed 150 mm. What will be the maximum compression of the spring
The collar is given a speed v₁ = 5 m/s to the left at position A. What is its speed at B? The guide is
smooth so that the collar is not subject to any friction. The unstretched length of the spring is R = 1.2
m and the spring constant is k = 500 N/m. (15 points).
The roller coaster car has a speed of VA = 36 ft/s when it
is at the crest of a vertical parabolic track. The total weight
of the car and the passengers is 350 lb. Neglect friction
and the mass of the wheels. (Figure 1)
Figure
200 ft
AKK
Chapter 15 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 15.2 - Determine the impulse of the force for t = 2 s.Ch. 15.2 - Determine the magnitude of the impulse the ground...Ch. 15.2 - The crate starts from rest and is towed by the...Ch. 15.2 - Determine the speed of the 25-kg crate when t = 4...Ch. 15.2 - If the car starts from rest, determine its speed...Ch. 15.2 - The traction force developed at the wheels is FD =...Ch. 15.2 - Determine the impulse of his foot on the ball at...Ch. 15.2 - The crate starts from rest and is towed by the...Ch. 15.2 - Determine the average tension in each of the two...Ch. 15.2 - If the uniform beam has a weight of 5000 lb,...
Ch. 15.2 - Determine the magnitude of the net impulse exerted...Ch. 15.2 - If it takes 80 s for the train to increase its...Ch. 15.2 - If they start from rest, determine their speed...Ch. 15.2 - If the impact occurs in 0.06 s, determine the...Ch. 15.2 - The winch delivers a horizontal towing force T to...Ch. 15.2 - If the crate starts from rest and achieves a speed...Ch. 15.2 - To achieve this the 2-kg spike S is fired into the...Ch. 15.2 - If the van has a speed of 20 km/h when t = 0,...Ch. 15.2 - If the speed decreases to 40 km/h in 5 s,...Ch. 15.2 - If it strikes the barrier, determine the...Ch. 15.2 - If the 100 kg crate is originally at rest at t = 0...Ch. 15.2 - From the data shown in the graphs, determine the...Ch. 15.2 - Determine its speed, starting from rest, when t =...Ch. 15.2 - Determine the speed of the crate when t = 3 s and...Ch. 15.2 - If these loadings vary in the manner shown on the...Ch. 15.2 - If the cabinet is initially moving to the left...Ch. 15.2 - The propeller provides the propulsion force F...Ch. 15.2 - Determine the sleds maximum velocity and the...Ch. 15.2 - If the 34-lb crate is originally on the ground at...Ch. 15.2 - If the 34-lb crate is originally at rest on the...Ch. 15.2 - The balloon is rising at a constant velocity of 18...Ch. 15.2 - Prob. 26PCh. 15.2 - Determine the speed of the crate when t = 3 s,...Ch. 15.2 - Determine how high the crate has moved upward when...Ch. 15.2 - As a result of the explosion, the cylinder...Ch. 15.2 - If the carrier is traveling forward with a speed...Ch. 15.2 - If B is moving downward with a velocity (vB)1 = 3...Ch. 15.2 - Prob. 32PCh. 15.2 - The winch delivers a horizontal towing force T to...Ch. 15.2 - It then travels along the trajectory shown before...Ch. 15.2 - Determine the velocity of A after collision if the...Ch. 15.2 - If the cart has a smooth surface and it is...Ch. 15.3 - If the two blocks couple together after collision,...Ch. 15.3 - If the spring is compressed s = 200 mm and then...Ch. 15.3 - If A is stationary and B has a velocity of 15 m/s...Ch. 15.3 - If a 20-kg projectile is fired from the cannon...Ch. 15.3 - Meanwhile a 2-Mg car A is traveling at 15 m/s to...Ch. 15.3 - Determine the distance s the boy reaches up the...Ch. 15.3 - At the same time another car having a mass of 12...Ch. 15.3 - When a 2-g bullet strikes and becomes embedded in...Ch. 15.3 - If he lands on the second fiat car B, determine...Ch. 15.3 - Determine the speed of the block just after the...Ch. 15.3 - Determine the speed of the block just after the...Ch. 15.3 - Determine the distance the block will slide before...Ch. 15.3 - When the toboggan reaches the bottom of the slope...Ch. 15.3 - Determine its speed v2 and its direction 2 when it...Ch. 15.3 - A spring, having a stiffness of k = 60 N/m, is...Ch. 15.3 - Determine the maximum compression of the spring...Ch. 15.3 - They are placed on a smooth surface and the spring...Ch. 15.3 - If they exchange positions, A going to B and then...Ch. 15.3 - If A walks to B and stops, and both walk back...Ch. 15.3 - If someone drives the automobile to the other side...Ch. 15.3 - A 10-kg crate is released from rest at A and...Ch. 15.3 - Block A has a mass of 5 kg and is placed on the...Ch. 15.3 - if the coefficient of kinetic friction between A...Ch. 15.3 - When it reaches the bottom, a spring loaded gun...Ch. 15.3 - If the belt starts from rest and begins to run...Ch. 15.3 - If the 10-g bullet is traveling at 300 m/s when it...Ch. 15.3 - The velocities of A and B before and after the...Ch. 15.3 - If the coefficient of restitution between the...Ch. 15.4 - As it slides down the ramp, it strikes the 80-lb...Ch. 15.4 - If the coefficient of restitution between the ball...Ch. 15.4 - Disk B has a mass of 11 kg and is initially at...Ch. 15.4 - Two disks A and B each have a mass of 1 kg and the...Ch. 15.4 - Disk A has a mass of 250 g and is sliding on a...Ch. 15.4 - After the collision, the car moves with a velocity...Ch. 15.4 - If the coefficient of restitution between the...Ch. 15.4 - The block has a velocity v = 10 m/s when it is s =...Ch. 15.4 - If A and B are rolling forward with velocity v and...Ch. 15.4 - If A and B are rolling forward with velocity v and...Ch. 15.4 - If e = 0.7, determine the velocity of each ball...Ch. 15.4 - If the coefficient of restitution between A and B...Ch. 15.4 - If the coefficient of restitution between A and B...Ch. 15.4 - If ball A is released from rest and strikes ball B...Ch. 15.4 - Determine (a) the velocity at which it strikes the...Ch. 15.4 - If the coefficient of restitution between the ball...Ch. 15.4 - If A is given a velocity of 0, while sphere B is...Ch. 15.4 - Determine the initial velocity vA of the ball and...Ch. 15.4 - Determine the initial velocity vA, the final...Ch. 15.4 - If both disks are moving with the velocities shown...Ch. 15.4 - If both disks are moving with the velocities shown...Ch. 15.4 - If the coefficient of restitution between the ball...Ch. 15.4 - If it rebounds to a height of hl, determine the...Ch. 15.4 - If it makes a direct collision with ball B (e =...Ch. 15.4 - If the coefficient of restitution between the...Ch. 15.4 - If they collide with the initial velocities shown,...Ch. 15.4 - If the coefficient of restitution between the ball...Ch. 15.4 - Determine (a) the velocity at which it strikes the...Ch. 15.4 - The box has a velocity v = 15 ft/s when it is 2 ft...Ch. 15.4 - Prob. 83PCh. 15.4 - If it rebounds at an angle and the coefficient of...Ch. 15.4 - If it rebounds at the same angle = 45 , determine...Ch. 15.4 - lf A strikes B with a velocity (vA)1 = 1.5 m/s as...Ch. 15.4 - If each "stone" is smooth and has a weight of 47...Ch. 15.4 - If each "stone" is smooth and has a weight of 47...Ch. 15.4 - If they have masses mA = 4 kg and mB = 2 kg,...Ch. 15.4 - if cranberries having an e 0.8 are to be...Ch. 15.4 - Prob. 91PCh. 15.4 - Prob. 92PCh. 15.4 - If they are sliding on a smooth horizontal plane...Ch. 15.4 - Determine its angular momentum HO about point O.Ch. 15.4 - Determine its angular momentum Hp about point P.Ch. 15.7 - If a constant tangential force F = 5 N is applied...Ch. 15.7 - If the block starts from rest, determine its speed...Ch. 15.7 - If the system is subjected to a couple moment M =...Ch. 15.7 - If the spheres are subjected to tangential forces...Ch. 15.7 - Determine the angular momentum HO of the 6-lb...Ch. 15.7 - Determine the angular momentum HP of the 6-lb...Ch. 15.7 - Determine the angular momentum HO, of each of the...Ch. 15.7 - Determine the angular momentum Hp, of each of the...Ch. 15.7 - Determine the angular momentum HO of the 3-kg...Ch. 15.7 - Determine the angular momentum Hp of the 3-kg...Ch. 15.7 - If the rod is subjected to a torque M = (t2 + 2) N...Ch. 15.7 - If the helix descends 8 ft for every one...Ch. 15.7 - If the helix descends 8 ft for every one...Ch. 15.7 - If the attached cord is pulled down through the...Ch. 15.7 - If the attached cord is pulled down through the...Ch. 15.7 - The blocks are fixed to the horizontal rods, and...Ch. 15.7 - The particle is placed at the position shown and...Ch. 15.7 - The car starts from rest. The total mass of the...Ch. 15.7 - If the force F on the cord is increased, the bob...Ch. 15.7 - It is attached to a fixed point at A and a block...Ch. 15.7 - If at t = 0, the cable OA is pulled in toward O at...Ch. 15.7 - If the rope is pulled inward with a constant speed...Ch. 15.7 - If the track is flat and banked at an angle of 60,...Ch. 15.7 - If the launch angle at this position is A = 70,...Ch. 15.7 - Prob. 114PCh. 15.9 - If the water has a cross-sectional area of 0.05...Ch. 15.9 - If the fan ejects air with a speed of 14 m/s,...Ch. 15.9 - Prob. 117PCh. 15.9 - Prob. 118PCh. 15.9 - If one-fourth of the water flows downward while...Ch. 15.9 - Water flows through the pipe at A with a velocity...Ch. 15.9 - Prob. 121PCh. 15.9 - Prob. 122PCh. 15.9 - If the locomotive is traveling at a constant speed...Ch. 15.9 - Prob. 124PCh. 15.9 - Prob. 125PCh. 15.9 - The machine discharges the snow through a tube T...Ch. 15.9 - Prob. 127PCh. 15.9 - Prob. 128PCh. 15.9 - It is then divided equally between the two outlets...Ch. 15.9 - Prob. 130PCh. 15.9 - Prob. 131PCh. 15.9 - Prob. 132PCh. 15.9 - Prob. 133PCh. 15.9 - Prob. 134PCh. 15.9 - Prob. 135PCh. 15.9 - Prob. 136PCh. 15.9 - Prob. 137PCh. 15.9 - Prob. 138PCh. 15.9 - Prob. 139PCh. 15.9 - The jet is traveling at a speed of 720 km/h. If...Ch. 15.9 - Prob. 141PCh. 15.9 - Air enters the intake scoops S at the rate of 50...Ch. 15.9 - Prob. 143PCh. 15.9 - Prob. 144PCh. 15.9 - Prob. 145PCh. 15.9 - Prob. 146PCh. 15.9 - Prob. 147PCh. 15.9 - Prob. 148PCh. 15.9 - Prob. 149PCh. 15.9 - If the ball then moves horizontally to the right,...Ch. 15.9 - Prob. 2CPCh. 15.9 - If the coefficient of kinetic friction between the...Ch. 15.9 - The coefficient of kinetic friction between the...Ch. 15.9 - If a horizontal force F is applied such that it...Ch. 15.9 - They are traveling along the track with the...Ch. 15.9 - If the projectile penetrates and emerges from the...Ch. 15.9 - If the collision is perfectly elastic (e = 1),...Ch. 15.9 - If A strikes B with a velocity of (vA)1 = 2 m/s as...Ch. 15.9 - If the frame is subjected to a couple M = (8t2 +...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The horizontal force P = 40-10t N (t is the time measured in seconds) is applied to the 2- kg collar that slides along the inclined rod. 2 kg- -P = (40– 10r)N At time t = 0, the position coordinate of the collar is x = 0, and its velocity is vo = 3 m/s directed down the rod. Find the time T and the speed Sof the collar when it returns to the position x = 0 for the first time. Neglect friction.arrow_forwardThe 40-kg crate is being hoisted by the motor. If at this instant shown the velocity of point P on the cable is 4 m/s and the speed is increasing at 2 m/s2 * what is the power input supplied to the motor if its efficiency is £ = 0.75? Neglect the mass of pulley and cable Vp ↓P = 4 m/s A Question 1: The 40-kg crate is being hoisted by the motor. If at this instant shown the velocity of point P on the cable is 4 m/s and the speed is increasing at 2 m/s², what is the power input supplied to the motor if its efficiency is = 0.75? Neglect the mass of pulley and cable. (a) 0.649 kW (b) 0.865 kW (c) 1.15 kW (d) 1.53 kWarrow_forwardThe pilot of a jet transport brings the engines to full takeoff power before releasing the brakes as the aircraft is standing on the runway. The jet thrust remains constant, and the aircraft has a near-constant acceleration of 0.34g. If the takeoff speed is 190 km/h, calculate the distance s and time t from rest to takeoff. Answers: t = iarrow_forward
- The 150-lb car of an amusement partk ride is connected to a rotating telescopic boom. When r = 15 ft, the car is moving on a horizontal circular path with a speed of 30 ft/s. If the boom is shortened at a rate of 3 ft/s, determine the speed of the car when r = 10 ft. Also, find the work done by the axial for F along the boom. Neglect the size of the car and the mass of the boom.arrow_forwardA man riding upward in a freight elevator accidentally drops a package off the elevator when it is 100 ft from the ground. If the elevator maintains a constant upward speed of 4 ft/s, determine how high the elevator is from the ground the instant the package hits the ground. Draw the v–t curve for the package during the time it is in motion. Assume that the package was released with the same upward speed as the elevator.arrow_forwardPackages having a mass of 4-kg are delivered from a conveyor to a ramp with a velocity of v = 0.8 m/s. What is the velocity in which the packages will leave the ramp (at point B)? Consider e =30° andh = 12 m. The coefficient of the kinetic friction between the package and the ramp is = 0.35 Note. Please write your final answer in m/s in the provided box. Report your answer in 2 decimal places. For example: 2.34 m/s 0.8 m/sarrow_forward
- The 400-kg mine car is hoisted up the incline using the cable and motor M. For a short time, the force in the cable is F = (3500 t2) N, where t is in seconds. ( Figure 1) Figure 17 7/8 15 ₁ = 2 m/s 1 of 1 Part A If the car has an initial velocity v₁ = 2m/s at s = 0 and t = 0, determine the distance it moves up the plane when t = 3 s. Express your answer to three significant figures and include the appropriate units. 8 = Value Submit HÅ Provide Feedback Request Answer P Pearson wwwww Units ? Next >arrow_forwardThe 4-lb collar is compressed against a spring a distance of 6 inches and then releasedfrom rest. The spring can be considered elastic and has a constant of k = 10 lb/in. Thespring is not adhered to the collar, and can be considered massless, so it will notextend into tension. Plot the acceleration of the collar as a function of x for x = 0 to 7 inches.What is the velocity as the collar leaves the spring?arrow_forward1. The collar is given a speed VA = 5 m/s to the left at position A. What is its speed at B? The guide is smooth so that the collar is not subject to any friction. The unstretched length of the spring is R = 1.2 m and the spring constant is k = 500 N/m. B R R MacBook Proarrow_forward
- Don't Use Chat GPT Will Upvotearrow_forwardUse 3 decimal places for partial and final answersarrow_forwardThe man stands 18 m from the wall and throws a ball at it with the speed of 15 m/s as shown in Figure Q2. He releases the ball at an angle of θ = 30° so that it strikes the wall at B the height of h1. The ball reached the maximum height at C. Find the component of velocity in x-direction just before it hit the wall at B. Calculate is the time of flight of the ball from A to B. Determine the height of h1 when the ball reach and hit the wall at B. Find the magnitude and direction of ball just before it hit the wall at B. Determine the maximum height of h2 and the horizontal distance of xc note: please answer the last two quetiondsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY