
Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15.3, Problem 35P
Meanwhile a 2-Mg car A is traveling at 15 m/s to the right. If the vehicles crash and become entangled, determine their common velocity just after the collision. Assume that the vehicles are free to roll during collision.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
In (Figure 1), take m₁ = 4 kg and mB = 4.6 kg.
Determine the z component of the angular momentum Ho of particle A about point O.
Determine the z component of the angular momentum Ho of particle B about point O. Suppose that
5 m
8 m/s
4 m
1.5 m
4 m
B
MB
1 m
2 m
5
30°
6 m/s
MA
The two disks A and B have a mass of 4 kg and 6 kg,
respectively. They collide with the initial velocities shown. The
coefficient of restitution is e = 0.75. Suppose that
(VA)1 = 6 m/s, (VB)₁ = 7 m/s. (Figure 1)
Determine the magnitude of the velocity of A just after impact.
Determine the angle between the x axis and the velocity of A just after impact, measured clockwise from the negative x axis.
Determine the magnitude of the velocity of B just after impact.
Determine the angle between the x axis and the velocity of B just after impact, measured clockwise from the positive x axis.
(VB)1
B
(VA)1
60°
Line of impact
A hot plane surface is maintained at 100°C, and it is exposed to air at 25°C.The combined heat transfer coefficient between the surface and the air is 25W/m²·K. (same as above). In this task, you are asked to design fins to cool asurface by attaching 3 cm-long, 0.25 cm-diameter aluminum pin fins (thermalconductivity, k = 237 W/m·K) with a center-to-center distance of 0.6 cm. (Tip:do not correct the length). Determine the rate of heat transfer from thefinned structure to the air for a 1 m x 1 m section of the plate.
Chapter 15 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 15.2 - Determine the impulse of the force for t = 2 s.Ch. 15.2 - Determine the magnitude of the impulse the ground...Ch. 15.2 - The crate starts from rest and is towed by the...Ch. 15.2 - Determine the speed of the 25-kg crate when t = 4...Ch. 15.2 - If the car starts from rest, determine its speed...Ch. 15.2 - The traction force developed at the wheels is FD =...Ch. 15.2 - Determine the impulse of his foot on the ball at...Ch. 15.2 - The crate starts from rest and is towed by the...Ch. 15.2 - Determine the average tension in each of the two...Ch. 15.2 - If the uniform beam has a weight of 5000 lb,...
Ch. 15.2 - Determine the magnitude of the net impulse exerted...Ch. 15.2 - If it takes 80 s for the train to increase its...Ch. 15.2 - If they start from rest, determine their speed...Ch. 15.2 - If the impact occurs in 0.06 s, determine the...Ch. 15.2 - The winch delivers a horizontal towing force T to...Ch. 15.2 - If the crate starts from rest and achieves a speed...Ch. 15.2 - To achieve this the 2-kg spike S is fired into the...Ch. 15.2 - If the van has a speed of 20 km/h when t = 0,...Ch. 15.2 - If the speed decreases to 40 km/h in 5 s,...Ch. 15.2 - If it strikes the barrier, determine the...Ch. 15.2 - If the 100 kg crate is originally at rest at t = 0...Ch. 15.2 - From the data shown in the graphs, determine the...Ch. 15.2 - Determine its speed, starting from rest, when t =...Ch. 15.2 - Determine the speed of the crate when t = 3 s and...Ch. 15.2 - If these loadings vary in the manner shown on the...Ch. 15.2 - If the cabinet is initially moving to the left...Ch. 15.2 - The propeller provides the propulsion force F...Ch. 15.2 - Determine the sleds maximum velocity and the...Ch. 15.2 - If the 34-lb crate is originally on the ground at...Ch. 15.2 - If the 34-lb crate is originally at rest on the...Ch. 15.2 - The balloon is rising at a constant velocity of 18...Ch. 15.2 - Prob. 26PCh. 15.2 - Determine the speed of the crate when t = 3 s,...Ch. 15.2 - Determine how high the crate has moved upward when...Ch. 15.2 - As a result of the explosion, the cylinder...Ch. 15.2 - If the carrier is traveling forward with a speed...Ch. 15.2 - If B is moving downward with a velocity (vB)1 = 3...Ch. 15.2 - Prob. 32PCh. 15.2 - The winch delivers a horizontal towing force T to...Ch. 15.2 - It then travels along the trajectory shown before...Ch. 15.2 - Determine the velocity of A after collision if the...Ch. 15.2 - If the cart has a smooth surface and it is...Ch. 15.3 - If the two blocks couple together after collision,...Ch. 15.3 - If the spring is compressed s = 200 mm and then...Ch. 15.3 - If A is stationary and B has a velocity of 15 m/s...Ch. 15.3 - If a 20-kg projectile is fired from the cannon...Ch. 15.3 - Meanwhile a 2-Mg car A is traveling at 15 m/s to...Ch. 15.3 - Determine the distance s the boy reaches up the...Ch. 15.3 - At the same time another car having a mass of 12...Ch. 15.3 - When a 2-g bullet strikes and becomes embedded in...Ch. 15.3 - If he lands on the second fiat car B, determine...Ch. 15.3 - Determine the speed of the block just after the...Ch. 15.3 - Determine the speed of the block just after the...Ch. 15.3 - Determine the distance the block will slide before...Ch. 15.3 - When the toboggan reaches the bottom of the slope...Ch. 15.3 - Determine its speed v2 and its direction 2 when it...Ch. 15.3 - A spring, having a stiffness of k = 60 N/m, is...Ch. 15.3 - Determine the maximum compression of the spring...Ch. 15.3 - They are placed on a smooth surface and the spring...Ch. 15.3 - If they exchange positions, A going to B and then...Ch. 15.3 - If A walks to B and stops, and both walk back...Ch. 15.3 - If someone drives the automobile to the other side...Ch. 15.3 - A 10-kg crate is released from rest at A and...Ch. 15.3 - Block A has a mass of 5 kg and is placed on the...Ch. 15.3 - if the coefficient of kinetic friction between A...Ch. 15.3 - When it reaches the bottom, a spring loaded gun...Ch. 15.3 - If the belt starts from rest and begins to run...Ch. 15.3 - If the 10-g bullet is traveling at 300 m/s when it...Ch. 15.3 - The velocities of A and B before and after the...Ch. 15.3 - If the coefficient of restitution between the...Ch. 15.4 - As it slides down the ramp, it strikes the 80-lb...Ch. 15.4 - If the coefficient of restitution between the ball...Ch. 15.4 - Disk B has a mass of 11 kg and is initially at...Ch. 15.4 - Two disks A and B each have a mass of 1 kg and the...Ch. 15.4 - Disk A has a mass of 250 g and is sliding on a...Ch. 15.4 - After the collision, the car moves with a velocity...Ch. 15.4 - If the coefficient of restitution between the...Ch. 15.4 - The block has a velocity v = 10 m/s when it is s =...Ch. 15.4 - If A and B are rolling forward with velocity v and...Ch. 15.4 - If A and B are rolling forward with velocity v and...Ch. 15.4 - If e = 0.7, determine the velocity of each ball...Ch. 15.4 - If the coefficient of restitution between A and B...Ch. 15.4 - If the coefficient of restitution between A and B...Ch. 15.4 - If ball A is released from rest and strikes ball B...Ch. 15.4 - Determine (a) the velocity at which it strikes the...Ch. 15.4 - If the coefficient of restitution between the ball...Ch. 15.4 - If A is given a velocity of 0, while sphere B is...Ch. 15.4 - Determine the initial velocity vA of the ball and...Ch. 15.4 - Determine the initial velocity vA, the final...Ch. 15.4 - If both disks are moving with the velocities shown...Ch. 15.4 - If both disks are moving with the velocities shown...Ch. 15.4 - If the coefficient of restitution between the ball...Ch. 15.4 - If it rebounds to a height of hl, determine the...Ch. 15.4 - If it makes a direct collision with ball B (e =...Ch. 15.4 - If the coefficient of restitution between the...Ch. 15.4 - If they collide with the initial velocities shown,...Ch. 15.4 - If the coefficient of restitution between the ball...Ch. 15.4 - Determine (a) the velocity at which it strikes the...Ch. 15.4 - The box has a velocity v = 15 ft/s when it is 2 ft...Ch. 15.4 - Prob. 83PCh. 15.4 - If it rebounds at an angle and the coefficient of...Ch. 15.4 - If it rebounds at the same angle = 45 , determine...Ch. 15.4 - lf A strikes B with a velocity (vA)1 = 1.5 m/s as...Ch. 15.4 - If each "stone" is smooth and has a weight of 47...Ch. 15.4 - If each "stone" is smooth and has a weight of 47...Ch. 15.4 - If they have masses mA = 4 kg and mB = 2 kg,...Ch. 15.4 - if cranberries having an e 0.8 are to be...Ch. 15.4 - Prob. 91PCh. 15.4 - Prob. 92PCh. 15.4 - If they are sliding on a smooth horizontal plane...Ch. 15.4 - Determine its angular momentum HO about point O.Ch. 15.4 - Determine its angular momentum Hp about point P.Ch. 15.7 - If a constant tangential force F = 5 N is applied...Ch. 15.7 - If the block starts from rest, determine its speed...Ch. 15.7 - If the system is subjected to a couple moment M =...Ch. 15.7 - If the spheres are subjected to tangential forces...Ch. 15.7 - Determine the angular momentum HO of the 6-lb...Ch. 15.7 - Determine the angular momentum HP of the 6-lb...Ch. 15.7 - Determine the angular momentum HO, of each of the...Ch. 15.7 - Determine the angular momentum Hp, of each of the...Ch. 15.7 - Determine the angular momentum HO of the 3-kg...Ch. 15.7 - Determine the angular momentum Hp of the 3-kg...Ch. 15.7 - If the rod is subjected to a torque M = (t2 + 2) N...Ch. 15.7 - If the helix descends 8 ft for every one...Ch. 15.7 - If the helix descends 8 ft for every one...Ch. 15.7 - If the attached cord is pulled down through the...Ch. 15.7 - If the attached cord is pulled down through the...Ch. 15.7 - The blocks are fixed to the horizontal rods, and...Ch. 15.7 - The particle is placed at the position shown and...Ch. 15.7 - The car starts from rest. The total mass of the...Ch. 15.7 - If the force F on the cord is increased, the bob...Ch. 15.7 - It is attached to a fixed point at A and a block...Ch. 15.7 - If at t = 0, the cable OA is pulled in toward O at...Ch. 15.7 - If the rope is pulled inward with a constant speed...Ch. 15.7 - If the track is flat and banked at an angle of 60,...Ch. 15.7 - If the launch angle at this position is A = 70,...Ch. 15.7 - Prob. 114PCh. 15.9 - If the water has a cross-sectional area of 0.05...Ch. 15.9 - If the fan ejects air with a speed of 14 m/s,...Ch. 15.9 - Prob. 117PCh. 15.9 - Prob. 118PCh. 15.9 - If one-fourth of the water flows downward while...Ch. 15.9 - Water flows through the pipe at A with a velocity...Ch. 15.9 - Prob. 121PCh. 15.9 - Prob. 122PCh. 15.9 - If the locomotive is traveling at a constant speed...Ch. 15.9 - Prob. 124PCh. 15.9 - Prob. 125PCh. 15.9 - The machine discharges the snow through a tube T...Ch. 15.9 - Prob. 127PCh. 15.9 - Prob. 128PCh. 15.9 - It is then divided equally between the two outlets...Ch. 15.9 - Prob. 130PCh. 15.9 - Prob. 131PCh. 15.9 - Prob. 132PCh. 15.9 - Prob. 133PCh. 15.9 - Prob. 134PCh. 15.9 - Prob. 135PCh. 15.9 - Prob. 136PCh. 15.9 - Prob. 137PCh. 15.9 - Prob. 138PCh. 15.9 - Prob. 139PCh. 15.9 - The jet is traveling at a speed of 720 km/h. If...Ch. 15.9 - Prob. 141PCh. 15.9 - Air enters the intake scoops S at the rate of 50...Ch. 15.9 - Prob. 143PCh. 15.9 - Prob. 144PCh. 15.9 - Prob. 145PCh. 15.9 - Prob. 146PCh. 15.9 - Prob. 147PCh. 15.9 - Prob. 148PCh. 15.9 - Prob. 149PCh. 15.9 - If the ball then moves horizontally to the right,...Ch. 15.9 - Prob. 2CPCh. 15.9 - If the coefficient of kinetic friction between the...Ch. 15.9 - The coefficient of kinetic friction between the...Ch. 15.9 - If a horizontal force F is applied such that it...Ch. 15.9 - They are traveling along the track with the...Ch. 15.9 - If the projectile penetrates and emerges from the...Ch. 15.9 - If the collision is perfectly elastic (e = 1),...Ch. 15.9 - If A strikes B with a velocity of (vA)1 = 2 m/s as...Ch. 15.9 - If the frame is subjected to a couple M = (8t2 +...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Heat is generated uniformly in a 4 cm-diameter, 16-cm long solid bar (k=2.4 W/m-K). The temperaturesat the center and at the surface of the bar are measured to be 210 oC and 45 oC, respectively. Calculatethe rate of heat generation within the bar. Solve the relevant energy balance equation and the boundaryconditions to calculate the rate of heat generation within the bar. (6 pts)arrow_forwardA hot plane surface is maintained at 100°C, and it is exposed to air at 25°C. The combined heat transfercoefficient between the surface and the air is 25 W/m²·K. You are tasked with designing an insulatingmaterial to cover the surface in order to reduce the heat transfer rate by 90%, meaning only 10% of theheat transfer would occur compared to the situation without insulation. The available insulating materialhas a thermal conductivity of 0.093 W/m·K. Assuming that the heat transfer coefficient and the surface/airtemperatures remain constant, calculate the required thickness of the insulating material in centimeters.arrow_forwardThe euler parameter in the image describes the orientation of N in the reference frame of U. How do I find the euler parameters that describe the orientation of U in the reference frame of N from the given information in the image.arrow_forward
- Fpull Ө A person, weighing 155 lb, is being lifted by a rope thrown. over a tree branch as shown (drawing not to scale). If the static coefficient of friction between the rope and the tree branch is us = 0.67, and the 0 = 45°. Determine the pulling force required to start lifting the person and the pulling force required to keep the person from falling? Pulling force to lift the person: Pulling force to keep the person from falling: lb lbarrow_forwardThe car weighs 1630 lbs and drives up the hill at a constant speed. Assuming the static friction coefficient between the wheels and the road is μs = 0.64, determine the steepest angle that the car can climb without slipping if it is.... a.) rear wheel drive b.) front wheel drive c.) four wheel drive a C CC ①⑧ BY NC Dr. Jacob Moore Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 8.75 ft b 3.325 ft C 1.66 ft a.) The steepest angle for rear wheel drive is 0 max degrees. b.) The steepest angle for front wheel drive is Omax degrees. c.) The steepest angle for four wheel drive is Omax degrees. = = =arrow_forwardFor the structure below, each member of the truss will safely support a tensile force of 3 kN and a compressive force of 1 kN. Determine the largest mass m that can be safely suspended. Hint: First work through this algebraically to find the forces in each member terms of the mass "m" to determine the largest stress member. 1 m t 1 m 1 m 1m + 1m E B 1977 marrow_forward
- Block A has a mass of 34 kg and block B has a mass of 41 kg. The two blocks are stacked on the ramp with an incline of Ꮎ 0 = 15.4°. Determine the largest horizontal force F that can be applied to block B without either block moving for each of the following two cases: a.) The friction coefficient for the contact between blocks A and B is μs1 0.56 and the friction coefficient for the = contact between block A and the ramp is μs2 = 0.34. b.) The friction coefficient for the contact between blocks A and B is 1 = 0.56 and the friction coefficient for the contact between block A and the ramp is μs2 = 0.17. Ꮎ F B A Part a) The limiting slip condition occurs at Select an answer CC BY NC SA 2016 Eric Davishahl The maximum force before either block A or B slips is N Part b) The limiting slip condition occurs at Select an answer The maximum force before either block A or B slips is Narrow_forwardThe crane truck has a weight of 11000 lb and a center of gravity at point . The parking brake only locks the rear wheels of the truck, so the front wheels are free to rotate. Determine the maximum force F applied at the angle = 0 30.5° that can be exerted on the crane without it slipping or tipping for each of the following cases: Case 1: The static friction coefficient between the rear tires and the ground is μ. = 0.050. ა Case 2: The static friction coefficient between the rear tires and the ground is μα == 0.33. d CGD 口 BY NC SA F 2013 Michael Swanbom кажо с Values for dimensions on the figure are given in the following table. Note the figure may not be to scale. Variable Value a 5.5 ft b 9 ft C 4 ft 3 ft 10 ft d h For Case 1, the constraint is Select an answer F = lbs. шал For Case 2, the constraint is Select an answer F пал lbs. and andarrow_forwardYou are leaning your 5.0 ft, 15.0 lb ladder against the wall in your garage. There are 2 rubber foot paddles on the bottom of the ladder, and your garage floor is concrete. The static friction between the rubber and concrete is μs = 0.580. What is the maximum distance from the wall to the rubber foot paddles, which you can lean your ladder without it slipping? Assume the wall is smooth. S The maximum distance = ftarrow_forward
- Instructions. "I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."arrow_forwardPearson eText Study Area mylabmastering.pearson.com Access Pearson P Pearson MyLab and Mastering Problem 14.78 P Course Home b Answered: HW_02.pdf EE 213-01 > Assignments HW_#... 2 of 8 Document Sharing User Settings The spring has a stiffness k = 200 N/m and an unstretched length of 0.5 m. It is attached to the 4.6-kg smooth collar and the collar is released from rest at A. Neglect the size of the collar. (Figure 1) Part A Determine the speed of the collar when it reaches B. Express your answer to three significant figures and include the appropriate units. Figure 1 of 1 με VB = Value Units Submit Request Answer Provide Feedback ? Review Next >arrow_forwardPearson eText Study Area Access Pearson mylabmastering.pearson.com P Pearson MyLab and Mastering Problem 15.79 P Course Home b Answered: HW_02.pdf EE 213-01 > Assignments HW_#... 6 of 8 > Document Sharing User Settings The two disks A and B have a mass of 4 kg and 5 kg, respectively. They collide with the initial velocities shown. The coefficient of restitution is e = 0.65. Suppose that (VA)1 = 6 m/s, (VB)1 = 8 m/s. (Figure 1) Part A Determine the magnitude of the velocity of A just after impact. Express your answer to three significant figures and include the appropriate units. Figure 1 of 1 μÅ (VA)2 = Value Units Submit Request Answer Part B ? Review Determine the angle between the x axis and the velocity of A just after impact, measured clockwise from the negative x axis. Express your answer in degrees to three significant figures. ΕΠΙ ΑΣΦ vec 01 Submit Request Answer Part C ? Determine the magnitude of the velocity of B just after impact. Express your answer to three significant…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY