Engineering Mechanics: Dynamics (14th Edition)
14th Edition
ISBN: 9780133915389
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15.3, Problem 43P
Determine the distance the block will slide before it stops. The coefficient of kinetic friction between the block and the plane is μk = 0.2.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The illustration in Fig. 3 shows the 20-kg block A sliding down on a
rough surface with a slope of 15°. The dynamic coefficient of friction between the block's contact
surface and the supporting surface is HA = 0.2. At the beginning of the experiment (t = 0s),
the block A has a velocity of v = 15 m/s and the distance between A and the 15-kg block B
is s = 6 m. The spring has a stiffness of k = 2000 N/m. Determine the maximum compression
of the spring due to the collision. Assume ug = 0.3 for the sliding of B and e = 0.5 for the
5. Collision.
collision.
15 m/s
-k = 2000 N/m
s = 6 m
15°
The block weighs 80 pounds. A cable is connected to itsupper left corner and passes over a fixed post. Thecoefficients of friction are μB = 0.3 for the block and theground and μP = 0.2 for the post and the cable. Determinethe minimum force T that will cause the system to move(either tip or slide - you must show which happens first).Take a = 2.5’ and b = 6’.
The conveyor belt is moving downward at 5 m/s. If the coefficient of static friction between the conveyor and the 15-kg package Bis * mu_{x} = 0.62 , determine the shortest time the belt can stop so that the package does not slide on the belt
Chapter 15 Solutions
Engineering Mechanics: Dynamics (14th Edition)
Ch. 15.2 - Determine the impulse of the force for t = 2 s.Ch. 15.2 - Determine the magnitude of the impulse the ground...Ch. 15.2 - The crate starts from rest and is towed by the...Ch. 15.2 - Determine the speed of the 25-kg crate when t = 4...Ch. 15.2 - If the car starts from rest, determine its speed...Ch. 15.2 - The traction force developed at the wheels is FD =...Ch. 15.2 - Determine the impulse of his foot on the ball at...Ch. 15.2 - The crate starts from rest and is towed by the...Ch. 15.2 - Determine the average tension in each of the two...Ch. 15.2 - If the uniform beam has a weight of 5000 lb,...
Ch. 15.2 - Determine the magnitude of the net impulse exerted...Ch. 15.2 - If it takes 80 s for the train to increase its...Ch. 15.2 - If they start from rest, determine their speed...Ch. 15.2 - If the impact occurs in 0.06 s, determine the...Ch. 15.2 - The winch delivers a horizontal towing force T to...Ch. 15.2 - If the crate starts from rest and achieves a speed...Ch. 15.2 - To achieve this the 2-kg spike S is fired into the...Ch. 15.2 - If the van has a speed of 20 km/h when t = 0,...Ch. 15.2 - If the speed decreases to 40 km/h in 5 s,...Ch. 15.2 - If it strikes the barrier, determine the...Ch. 15.2 - If the 100 kg crate is originally at rest at t = 0...Ch. 15.2 - From the data shown in the graphs, determine the...Ch. 15.2 - Determine its speed, starting from rest, when t =...Ch. 15.2 - Determine the speed of the crate when t = 3 s and...Ch. 15.2 - If these loadings vary in the manner shown on the...Ch. 15.2 - If the cabinet is initially moving to the left...Ch. 15.2 - The propeller provides the propulsion force F...Ch. 15.2 - Determine the sleds maximum velocity and the...Ch. 15.2 - If the 34-lb crate is originally on the ground at...Ch. 15.2 - If the 34-lb crate is originally at rest on the...Ch. 15.2 - The balloon is rising at a constant velocity of 18...Ch. 15.2 - Prob. 26PCh. 15.2 - Determine the speed of the crate when t = 3 s,...Ch. 15.2 - Determine how high the crate has moved upward when...Ch. 15.2 - As a result of the explosion, the cylinder...Ch. 15.2 - If the carrier is traveling forward with a speed...Ch. 15.2 - If B is moving downward with a velocity (vB)1 = 3...Ch. 15.2 - Prob. 32PCh. 15.2 - The winch delivers a horizontal towing force T to...Ch. 15.2 - It then travels along the trajectory shown before...Ch. 15.2 - Determine the velocity of A after collision if the...Ch. 15.2 - If the cart has a smooth surface and it is...Ch. 15.3 - If the two blocks couple together after collision,...Ch. 15.3 - If the spring is compressed s = 200 mm and then...Ch. 15.3 - If A is stationary and B has a velocity of 15 m/s...Ch. 15.3 - If a 20-kg projectile is fired from the cannon...Ch. 15.3 - Meanwhile a 2-Mg car A is traveling at 15 m/s to...Ch. 15.3 - Determine the distance s the boy reaches up the...Ch. 15.3 - At the same time another car having a mass of 12...Ch. 15.3 - When a 2-g bullet strikes and becomes embedded in...Ch. 15.3 - If he lands on the second fiat car B, determine...Ch. 15.3 - Determine the speed of the block just after the...Ch. 15.3 - Determine the speed of the block just after the...Ch. 15.3 - Determine the distance the block will slide before...Ch. 15.3 - When the toboggan reaches the bottom of the slope...Ch. 15.3 - Determine its speed v2 and its direction 2 when it...Ch. 15.3 - A spring, having a stiffness of k = 60 N/m, is...Ch. 15.3 - Determine the maximum compression of the spring...Ch. 15.3 - They are placed on a smooth surface and the spring...Ch. 15.3 - If they exchange positions, A going to B and then...Ch. 15.3 - If A walks to B and stops, and both walk back...Ch. 15.3 - If someone drives the automobile to the other side...Ch. 15.3 - A 10-kg crate is released from rest at A and...Ch. 15.3 - Block A has a mass of 5 kg and is placed on the...Ch. 15.3 - if the coefficient of kinetic friction between A...Ch. 15.3 - When it reaches the bottom, a spring loaded gun...Ch. 15.3 - If the belt starts from rest and begins to run...Ch. 15.3 - If the 10-g bullet is traveling at 300 m/s when it...Ch. 15.3 - The velocities of A and B before and after the...Ch. 15.3 - If the coefficient of restitution between the...Ch. 15.4 - As it slides down the ramp, it strikes the 80-lb...Ch. 15.4 - If the coefficient of restitution between the ball...Ch. 15.4 - Disk B has a mass of 11 kg and is initially at...Ch. 15.4 - Two disks A and B each have a mass of 1 kg and the...Ch. 15.4 - Disk A has a mass of 250 g and is sliding on a...Ch. 15.4 - After the collision, the car moves with a velocity...Ch. 15.4 - If the coefficient of restitution between the...Ch. 15.4 - The block has a velocity v = 10 m/s when it is s =...Ch. 15.4 - If A and B are rolling forward with velocity v and...Ch. 15.4 - If A and B are rolling forward with velocity v and...Ch. 15.4 - If e = 0.7, determine the velocity of each ball...Ch. 15.4 - If the coefficient of restitution between A and B...Ch. 15.4 - If the coefficient of restitution between A and B...Ch. 15.4 - If ball A is released from rest and strikes ball B...Ch. 15.4 - Determine (a) the velocity at which it strikes the...Ch. 15.4 - If the coefficient of restitution between the ball...Ch. 15.4 - If A is given a velocity of 0, while sphere B is...Ch. 15.4 - Determine the initial velocity vA of the ball and...Ch. 15.4 - Determine the initial velocity vA, the final...Ch. 15.4 - If both disks are moving with the velocities shown...Ch. 15.4 - If both disks are moving with the velocities shown...Ch. 15.4 - If the coefficient of restitution between the ball...Ch. 15.4 - If it rebounds to a height of hl, determine the...Ch. 15.4 - If it makes a direct collision with ball B (e =...Ch. 15.4 - If the coefficient of restitution between the...Ch. 15.4 - If they collide with the initial velocities shown,...Ch. 15.4 - If the coefficient of restitution between the ball...Ch. 15.4 - Determine (a) the velocity at which it strikes the...Ch. 15.4 - The box has a velocity v = 15 ft/s when it is 2 ft...Ch. 15.4 - Prob. 83PCh. 15.4 - If it rebounds at an angle and the coefficient of...Ch. 15.4 - If it rebounds at the same angle = 45 , determine...Ch. 15.4 - lf A strikes B with a velocity (vA)1 = 1.5 m/s as...Ch. 15.4 - If each "stone" is smooth and has a weight of 47...Ch. 15.4 - If each "stone" is smooth and has a weight of 47...Ch. 15.4 - If they have masses mA = 4 kg and mB = 2 kg,...Ch. 15.4 - if cranberries having an e 0.8 are to be...Ch. 15.4 - Prob. 91PCh. 15.4 - Prob. 92PCh. 15.4 - If they are sliding on a smooth horizontal plane...Ch. 15.4 - Determine its angular momentum HO about point O.Ch. 15.4 - Determine its angular momentum Hp about point P.Ch. 15.7 - If a constant tangential force F = 5 N is applied...Ch. 15.7 - If the block starts from rest, determine its speed...Ch. 15.7 - If the system is subjected to a couple moment M =...Ch. 15.7 - If the spheres are subjected to tangential forces...Ch. 15.7 - Determine the angular momentum HO of the 6-lb...Ch. 15.7 - Determine the angular momentum HP of the 6-lb...Ch. 15.7 - Determine the angular momentum HO, of each of the...Ch. 15.7 - Determine the angular momentum Hp, of each of the...Ch. 15.7 - Determine the angular momentum HO of the 3-kg...Ch. 15.7 - Determine the angular momentum Hp of the 3-kg...Ch. 15.7 - If the rod is subjected to a torque M = (t2 + 2) N...Ch. 15.7 - If the helix descends 8 ft for every one...Ch. 15.7 - If the helix descends 8 ft for every one...Ch. 15.7 - If the attached cord is pulled down through the...Ch. 15.7 - If the attached cord is pulled down through the...Ch. 15.7 - The blocks are fixed to the horizontal rods, and...Ch. 15.7 - The particle is placed at the position shown and...Ch. 15.7 - The car starts from rest. The total mass of the...Ch. 15.7 - If the force F on the cord is increased, the bob...Ch. 15.7 - It is attached to a fixed point at A and a block...Ch. 15.7 - If at t = 0, the cable OA is pulled in toward O at...Ch. 15.7 - If the rope is pulled inward with a constant speed...Ch. 15.7 - If the track is flat and banked at an angle of 60,...Ch. 15.7 - If the launch angle at this position is A = 70,...Ch. 15.7 - Prob. 114PCh. 15.9 - If the water has a cross-sectional area of 0.05...Ch. 15.9 - If the fan ejects air with a speed of 14 m/s,...Ch. 15.9 - Prob. 117PCh. 15.9 - Prob. 118PCh. 15.9 - If one-fourth of the water flows downward while...Ch. 15.9 - Water flows through the pipe at A with a velocity...Ch. 15.9 - Prob. 121PCh. 15.9 - Prob. 122PCh. 15.9 - If the locomotive is traveling at a constant speed...Ch. 15.9 - Prob. 124PCh. 15.9 - Prob. 125PCh. 15.9 - The machine discharges the snow through a tube T...Ch. 15.9 - Prob. 127PCh. 15.9 - Prob. 128PCh. 15.9 - It is then divided equally between the two outlets...Ch. 15.9 - Prob. 130PCh. 15.9 - Prob. 131PCh. 15.9 - Prob. 132PCh. 15.9 - Prob. 133PCh. 15.9 - Prob. 134PCh. 15.9 - Prob. 135PCh. 15.9 - Prob. 136PCh. 15.9 - Prob. 137PCh. 15.9 - Prob. 138PCh. 15.9 - Prob. 139PCh. 15.9 - The jet is traveling at a speed of 720 km/h. If...Ch. 15.9 - Prob. 141PCh. 15.9 - Air enters the intake scoops S at the rate of 50...Ch. 15.9 - Prob. 143PCh. 15.9 - Prob. 144PCh. 15.9 - Prob. 145PCh. 15.9 - Prob. 146PCh. 15.9 - Prob. 147PCh. 15.9 - Prob. 148PCh. 15.9 - Prob. 149PCh. 15.9 - If the ball then moves horizontally to the right,...Ch. 15.9 - Prob. 2CPCh. 15.9 - If the coefficient of kinetic friction between the...Ch. 15.9 - The coefficient of kinetic friction between the...Ch. 15.9 - If a horizontal force F is applied such that it...Ch. 15.9 - They are traveling along the track with the...Ch. 15.9 - If the projectile penetrates and emerges from the...Ch. 15.9 - If the collision is perfectly elastic (e = 1),...Ch. 15.9 - If A strikes B with a velocity of (vA)1 = 2 m/s as...Ch. 15.9 - If the frame is subjected to a couple M = (8t2 +...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The leather rein used to fasten the horse to the hitching rail weighs 3.5 oz per foot. The coefficient of static friction between the rail and the rein is 0.6. If a 34-lb force acting on the bridle is sufficient to restrain the horse, determine the smallest safe length L for the free end of the rein.arrow_forward2. The car, having a mass of 1000 kg, is traveling horizontally along a 20° banked track which is circular and has a radius of curvature of p = 100 m. If the coefficient of static friction between the tires and the road is us = 0.3, determine the minimum and maximum constant speed at which the car can travel without sliding down and up the slope. Neglect the size of the car. e= 20°arrow_forwardThe 3-kg crate rests on the 10-kg cart where the coefficients of static and kinetic friction are u, = 0.25 and Mk=0.2, respectively. Determine the smallest constant force P needed to cause the crate to slip. How much time does it take for the crate to slip off the cart? 3 m- G - 2 m Parrow_forward
- The 20-lb block has friction coefficients of μ = 0.4 and = 0.35, with the inclined surface. Find a. the angle where the 10-lb block begins to slide b. the acceleration of the block at the angle where it first slides c. the acceleration of the block at an angle 10° past the angle in b. If you use cartesian coordinates with x-along the slope, the problem is easier. B Aarrow_forward5. | Block A has a mass of 60 kg and rests on block B, which has a mass of 30 kg. If the coefficients of static and kinetic friction are indicated in the figure, determine the largest horizontal force P which can be applied to block B so that block A does not slip on block B while block B slides. H= 0.30- Hx = 0,35 B.arrow_forwardaolve very very fast in 15 min | dybalaarrow_forward
- r The bottle shown rests at a distance of r = 2.5 ft from the center of the horizontal platform. The coefficient of static friction between the bottle and the platform is μ = 0.25. The platform starts at rest, rad and then begins rotating at an accelerating rate of 0 = 0.8 $² Assuming the bottle doesn't tip over, after how many seconds does the bottle begin to slip? t = Sarrow_forwardThe box is at rest at point / when it is sliding down the incline. If the coefficient of kinetic friction between H.0.40 H-0.30 H,=0.28 the crate and the incline is 0.30 from ! to 2 and 0.22 from 2 to 3, detemine its speeds at points 2 and 3. H-0.22 3 20 7 m 10 7m إضافة ملفarrow_forwardThe crate has a mass of 80 kg and is being towed by a chain which is always directed at 70° from the vertical. The towing force is defined by the equation: P = 20t², where P is in Newtons and t is in seconds. If the coefficient of static friction is µ = 0.4 and the coefficient of kinetic friction is k 0.3, evaluate the = time when the crate's acceleration is 1.7473 m/sec². Apply Newton's second law of motion.arrow_forward
- The conveyor belt is moving downward at 5 m/s. If the coefficient of static friction between the conveyor and the 12-kg package B is uk = 0.71, determine the shortest time the belt can stop so that the package does not slide on the belt.arrow_forwardThe coefficient of static friction between the 184-kg crate and the flat bed of the truck is μk = 0.37. Determine the shortest time for the truck to reach a speed of 74 km/h, starting from rest with constant acceleration, so that the crate does not slip. Answer is minutes.arrow_forwardThe 5-lb packages ride on the surface of the conveyor belt as shown in (Figure 1). The coefficient of static friction between the belt and a package is 0.45. Figure 0. 6 in. 6 If the belt starts from rest and its speed increases to 2 ft/s in 2 s, determine the maximum angle so that none of the packages slip on the inclined surface AB of the belt. Express your answer in degrees to three significant figures. 0 = Submit Part B Avec b = Request Answer At what angle do the packages first begin to slip off the surface of the belt after the belt is moving at its constant speed of 2 ft/s? Neglect the size of the packages. Express your answer in degrees to three significant figures. IVE| ΑΣΦ | 41 ? vec ? Oarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Column buckling; Author: Amber Book;https://www.youtube.com/watch?v=AvvaCi_Nn94;License: Standard Youtube License