Let k be a constant, F = F( x , y , z ) , G = G( x , y , z ) , and ϕ = ϕ ( x , y , z ) . Prove the following identities, assuming that all derivatives involved exist and are continuous. div( ϕ F) = ϕ div F + ∇ ϕ ⋅ F
Let k be a constant, F = F( x , y , z ) , G = G( x , y , z ) , and ϕ = ϕ ( x , y , z ) . Prove the following identities, assuming that all derivatives involved exist and are continuous. div( ϕ F) = ϕ div F + ∇ ϕ ⋅ F
Let k be a constant,
F
=
F(
x
,
y
,
z
)
,
G
=
G(
x
,
y
,
z
)
,
and
ϕ
=
ϕ
(
x
,
y
,
z
)
.
Prove the following identities, assuming that all derivatives involved exist and are continuous.
Use Euler's method to numerically integrate
dy
dx
-2x+12x² - 20x +8.5
from x=0 to x=4 with a step size of 0.5. The initial condition at x=0 is y=1. Recall
that the exact solution is given by y = -0.5x+4x³- 10x² + 8.5x+1
Find an equation of the line tangent to the graph of f(x) = (5x-9)(x+4) at (2,6).
Find the point on the graph of the given function at which the slope of the tangent line is the given slope.
2
f(x)=8x²+4x-7; slope of the tangent line = -3
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY