Consider A = {z = C: |Re(z)| < 2, |Im(z)| < 3}. The complex line integral 1 takes value: -2πί (A) (i - 4)² (B) 0 (C) (D) -1 (i - 4)² Απί (4-2)² Les (22 dz (22 - 2iz 1)(z - 4) - −

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter3: Functions And Graphs
Section: Chapter Questions
Problem 29RE
icon
Related questions
Question

correct answer is A
could you please show me how to compute using the residue theorem

Consider A = {z = C: |Re(z)| < 2, |Im(z)| < 3}. The complex line integral
1
takes value:
-2πί
(A)
(i - 4)²
(B) 0
(C)
(D)
-1
(i - 4)²
Απί
(4-2)²
Les (22
dz
(22 - 2iz 1)(z - 4)
- −
Transcribed Image Text:Consider A = {z = C: |Re(z)| < 2, |Im(z)| < 3}. The complex line integral 1 takes value: -2πί (A) (i - 4)² (B) 0 (C) (D) -1 (i - 4)² Απί (4-2)² Les (22 dz (22 - 2iz 1)(z - 4) - −
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
College Algebra (MindTap Course List)
College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning